Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(11): 4508-4520, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37421357

ABSTRACT

BACKGROUND: Virus Yellows (VY), a disease caused by several aphid-borne viruses, is a major threat to the global sugar beet production. Following the ban of neonicotinoid-based seed treatments against aphids in Europe, increased efforts are needed to monitor and forecast aphid population spread during the sugar beet growing season. In particular, predicting aphid flight seasonal activity could allow anticipation of the timing and intensity of crop colonisation and contribute to the proper implementation of management methods. Forecasts should be made early enough to assess risk, but can be updated as the season progresses to refine management. Based on a long-term suction-trap dataset gathered between 1978 and 2014, we built and evaluated a set of models to predict the flight activity features of the main VY vector, Myzus persicae, at any location in the French sugar beet production area (c. 4 × 105 ha). Flight onset dates, length of flight period and cumulative abundance of flying aphids were predicted using climatic and land-use predictors as well as geographical position. RESULTS: Our predictions outperformed current models published in the literature. The importance of the predictor variables varied according to the predicted flight feature but winter and early spring temperature always played a major role. Forecasts based on temperature were made more accurate by adding predictors related to aphid winter reservoirs. In addition, updating the model parameters to take advantage of new weather data acquired during the season improved the flight forecast. CONCLUSION: Our models can be used as a tool for the mitigation in sugar beet crops. © 2023 Society of Chemical Industry.

2.
Insects ; 10(5)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058845

ABSTRACT

Early experience of olfactory stimuli associated with their host-plant complex (HPC) is an important driver of parasitoid foraging choices, notably leading to host fidelity. Mechanisms involved, such as peripheral or central modulation, and the impact of a complex olfactory environment are unknown. Using olfactometer assays, we compared HPC preference of Aphidius ervi Haliday (Hymenoptera:Braconidae) females originating from two different HPCs, either with the other HPC in close vicinity (complex environment) or without (simple environment). We also investigated antennal responses to volatiles differentially emitted by the two respective HPCs. In a simple environment, HPC of origin had an influence on olfactory choice, but the preferences observed were asymmetric according to parasitoid origin. Electroantennographic recordings revealed significant sensitivity differences for some of the tested individual volatiles, which are emitted differentially by the two HPCs. Besides, presence of an alternative HPC during early stages modified subsequent parasitoid preferences. We discuss how increased olfactory complexity could influence parasitoid host foraging and biological control in diversified cropping systems.

3.
Insect Sci ; 26(5): 881-896, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29513406

ABSTRACT

Insect populations are prone to respond to global changes through shifts in phenology, distribution and abundance. However, global changes cover several factors such as climate and land-use, the relative importance of these being largely unknown. Here, we aim at disentangling the effects of climate, land-use, and geographical drivers on aphid abundance and phenology in France, at a regional scale and over the last 40 years. We used aerial data obtained from suction traps between 1978 and 2015 on five aphid species varying in their degree of specialization to legumes, along with climate, legume crop area and geographical data. Effects of environmental and geographical variables on aphid annual abundance and spring migration dates were analyzed using generalized linear mixed models. We found that within the last four decades, aphids have advanced their spring migration by a month, mostly due to the increase in temperature early in the year, and their abundance decreased by half on average, presumably in response to a combination of factors. The influence of legume crop area decreased with the degree of specialization of the aphid species to such crops. The effect of geographical variation was high even when controlling for environmental variables, suggesting that many other spatially structured processes act on aphid population characteristics. Multifactorial analyses helped to partition the effects of different global change drivers. Climate and land-use changes have strong effects on aphid populations, with important implications for future agriculture. Additionally, trait-based response variation could have major consequences at the community scale.


Subject(s)
Aphids , Climate Change , Fabaceae/parasitology , Animal Migration , Animals , Crops, Agricultural , Ecosystem , France , Geography , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...