Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 426: 115636, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34214573

ABSTRACT

Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Genistein/therapeutic use , Protective Agents/therapeutic use , Alanine Transaminase/blood , Aldehydes/metabolism , Animals , Aspartate Aminotransferases/blood , Bile/metabolism , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/metabolism , Genistein/pharmacology , Glutathione/metabolism , Glutathione Transferase/metabolism , Herbicides , Liver/drug effects , Liver/metabolism , Male , Paraquat , Protective Agents/pharmacology , Rats, Wistar
2.
Toxicol Appl Pharmacol ; 287(2): 178-190, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26049102

ABSTRACT

The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 µM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Glutathione Transferase/biosynthesis , Multidrug Resistance-Associated Proteins/biosynthesis , CREB-Binding Protein/metabolism , Caco-2 Cells , Colforsin/pharmacology , Dinitrochlorobenzene/pharmacology , Dose-Response Relationship, Drug , Humans , Multidrug Resistance-Associated Protein 2 , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcription Factor AP-1/metabolism
3.
PLoS One ; 10(3): e0119502, 2015.
Article in English | MEDLINE | ID: mdl-25781341

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 µM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 µM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 µM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 µM) and MRP2 induction by GNT (only at 10 µM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genistein/pharmacology , Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , MicroRNAs/genetics , Niacinamide/pharmacology , Phytoestrogens/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sorafenib , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...