Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Brain Stimul ; 15(6): 1451-1462, 2022.
Article in English | MEDLINE | ID: mdl-36374738

ABSTRACT

The in vitro study demonstrates wirelessly controlled modulation of neural activity using magnetoelectric nanoparticles (MENPs), synchronized to magnetic field application with a sub-25-msec temporal response. Herein, MENPs are sub-30-nm CoFe2O4@BaTiO3 core-shell nanostructures. MENPs were added to E18 rat hippocampal cell cultures (0.5 µg of MENPs per 100,000 neurons) tagged with fluorescent Ca2+ sensitive indicator cal520. MENPs were shown to wirelessly induce calcium transients which were synchronized with application of 1200-Oe bipolar 25-msec magnetic pulses at a rate of 20 pulses/sec. The observed calcium transients were similar, in shape and magnitude, to those generated through the control electric field stimulation with a 50-µA current, and they were inhibited by the sodium channel blocker tetrodotoxin. The observed MENP-based magnetic excitation of neural activity is in agreement with the non-linear M - H hysteresis loop of the MENPs, wherein the MENPs' coercivity value sets the threshold for the externally applied magnetic field.


Subject(s)
Calcium , Nanoparticles , Rats , Animals , Magnetic Fields , Nanoparticles/chemistry , Neurons/physiology
3.
ACS Chem Neurosci ; 5(1): 64-70, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24304264

ABSTRACT

We have synthesized photolabile 7-diethylamino coumarin (DEAC) derivatives of γ-aminobutyric acid (GABA). These caged neurotransmitters efficiently release GABA using linear or nonlinear excitation. We used a new DEAC-based caging chromophore that has a vinyl acrylate substituent at the 3-position that shifts the absorption maximum of DEAC to about 450 nm and thus is named "DEAC450". DEAC450-caged GABA is photolyzed with a quantum yield of 0.39 and is highly soluble and stable in physiological buffer. We found that DEAC450-caged GABA is relatively inactive toward two-photon excitation at 720 nm, so when paired with a nitroaromatic caged glutamate that is efficiently excited at such wavelengths, we could photorelease glutamate and GABA around single spine heads on neurons in brain slices with excellent wavelength selectivity using two- and one-photon photolysis, respectively. Furthermore, we found that DEAC450-caged GABA could be effectively released using two-photon excitation at 900 nm with spatial resolution of about 3 µm. Taken together, our experiments show that the DEAC450 caging chromophore holds great promise for the development of new caged compounds that will enable wavelength-selective, two-color interrogation of neuronal signaling with excellent subcellular resolution.


Subject(s)
Neurons/drug effects , Neurons/metabolism , Photons , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/pharmacology , Animals , Brain Chemistry , Color , Hippocampus/cytology , In Vitro Techniques , Mice , Patch-Clamp Techniques , Photochemical Processes , Photolysis , Synapses/drug effects , gamma-Aminobutyric Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...