Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 Dec 01.
Article in English | MEDLINE | ID: mdl-36453717

ABSTRACT

Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; that is, the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta-phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.

2.
J Neurosci ; 39(34): 6728-6736, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31235649

ABSTRACT

Retrieval of learning-related neural activity patterns is thought to drive memory stabilization. However, finding reliable, noninvasive, content-specific indicators of memory retrieval remains a central challenge. Here, we attempted to decode the content of retrieved memories in the EEG during sleep. During encoding, male and female human subjects learned to associate spatial locations of visual objects with left- or right-hand movements, and each object was accompanied by an inherently related sound. During subsequent slow-wave sleep within an afternoon nap, we presented half of the sound cues that were associated (during wake) with left- and right-hand movements before bringing subjects back for a final postnap test. We trained a classifier on sleep EEG data (focusing on lateralized EEG features that discriminated left- vs right-sided trials during wake) to predict learning content when we cued the memories during sleep. Discrimination performance was significantly above chance and predicted subsequent memory, supporting the idea that retrieval leads to memory stabilization. Moreover, these lateralized signals increased with postcue sleep spindle power, demonstrating that retrieval has a strong relationship with spindles. These results show that lateralized activity related to individual memories can be decoded from sleep EEG, providing an effective indicator of offline retrieval.SIGNIFICANCE STATEMENT Memories are thought to be retrieved during sleep, leading to their long-term stabilization. However, there has been relatively little work in humans linking neural measures of retrieval of individual memories during sleep to subsequent memory performance. This work leverages the prominent electrophysiological signal triggered by lateralized movements to robustly demonstrate the retrieval of specific cued memories during sleep. Moreover, these signals predict subsequent memory and are correlated with sleep spindles, neural oscillations that have previously been implicated in memory stabilization. Together, these findings link memory retrieval to stabilization and provide a powerful tool for investigating memory in a wide range of learning contexts and human populations.


Subject(s)
Learning/physiology , Memory/physiology , Sleep/physiology , Adolescent , Adult , Cues , Electroencephalography , Female , Functional Laterality/physiology , Humans , Male , Memory Consolidation/physiology , Mental Recall/physiology , Movement/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...