Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 5(5): e00329, 2021 May.
Article in English | MEDLINE | ID: mdl-34095742

ABSTRACT

Traditional breeding and molecular approaches have been used to develop tobacco varieties with reduced nicotine and secondary alkaloid levels. However, available low-alkaloid tobacco varieties have impaired leaf quality likely due to the metabolic consequences of nicotine biosynthesis downregulation. Recently, we found evidence that the unbalanced crosstalk between nicotine and polyamine pathways is involved in impaired leaf ripening of a low-alkaloid (LA) Burley 21 line having a mutation at the Nic1 and Nic2 loci, key biosynthetic regulators of nicotine biosynthesis. Since the Nic1 and Nic2 loci are comprised of several genes, all phenotypic changes seen in LA Burley 21 could be due to a mixture of genetics-based responses. Here, we investigated the commercial burley variety TN90 LC and its transgenic versions with only one downregulated gene, either putrescine methyl transferase (PMT-RNAi) or PR50-protein (PR50-RNAi). Nicotine levels of cured lamina of TN90 LC, TN90 PMT-RNAi and TN90 PR50-RNAi, were 70.5 ± 3.8, 2.4 ± 0.5, and 6.0 ± 1.1 mg/g dry weight, respectively. Low-alkaloid transgenic lines showed delayed leaf maturation and impaired leaf quality. We analyzed polyamine contents and ripening markers in wild-type TN90 control plants (WT) and the two transgenic lines. The ripening markers revealed that the PMT-RNAi line showed the most pronounced impaired leaf maturation phenotype at harvest, characterized by higher chlorophyll (19%) and glucose (173%) contents and more leaf mesophyll cells per area (25%), while the ripening markers revealed that maturation of PR50-RNAi plants was intermediate between PMT-RNAi and WT lines. Comparative polyamine analyses showed an increase in free and conjugated polyamines in roots of both transgenic lines, this being most pronounced in the PMT-RNAi plants. For PMT-RNAi plants, there were further perturbations of polyamine content in the leaves, which mirrored the general phenotype, as PR50-RNAi transgenic plants looked more similar to the WT than PMT-RNAi transgenic plants. Activity of ornithine decarboxylase, the enzyme that catalyzes the committing step of polyamine biosynthesis, was significantly higher in roots and mature leaves of PMT-RNAi plants in comparison to WT, while there was no increase observed for arginine decarboxylase. Treatment of both transgenic lines with polyamine biosynthesis inhibitors decreased the polyamine content and ameliorated the phenotype, confirming the intricate interplay of polyamine and nicotine biosynthesis in tobacco and the influence of this interplay on leaf ripening.

2.
Plant Direct ; 2(7): e00077, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31245740

ABSTRACT

The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the Nic1 and Nic2 loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. Polyamines are involved in key developmental, physiological, and metabolic processes in plants, and act as anti-senescence and anti-ripening regulators. We investigated the role of polyamines in tobacco leaf maturation by analyzing the free and conjugated polyamine fractions in the leaves and roots of four Burley 21 varieties: NA (normal alkaloid levels, wild-type control), HI (high intermediates, nic2 -), LI (low intermediates, nic1 -), and LA (nic1 - nic2 -). The pool of conjugated polyamines increased with plant age in the roots and leaves of all four varieties, but the levels of free and conjugated putrescine and spermidine were higher in the LI and LA plants than NA controls. The increase in the polyamine content correlated with delayed maturation and senescence, i.e., LA plants with the highest polyamine levels showed the most severe impaired leaf maturation phenotype, characterized by higher chlorophyll content and more mesophyll cells per unit leaf area. Treatment of LA plants with inhibitors of polyamine biosynthesis and/or the growth regulator Ethephon® reduced accumulation of polyamines, achieving a partial amelioration of the LA phenotype. Our data show that the regulation of polyamine homeostasis is strongly disrupted in LA plants, and that free and conjugated polyamines contribute to the observed impairment of leaf maturation.

SELECTION OF CITATIONS
SEARCH DETAIL
...