Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(6)2023 06 16.
Article in English | MEDLINE | ID: mdl-37376681

ABSTRACT

The second wave of COVID-19 occurred in South America in early 2021 and was mainly driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic analyses were performed. Our findings revealed that the Lambda variant was first detected in Argentina in January 2021 and steadily increased in frequency until it peaked in April 2021, with continued detection throughout the year. Phylodynamic analyses showed that at least 18 introductions of the Lambda variant into the country occurred, with nine of them having evidence of onward local transmission. The spatial--temporal reconstruction showed that Argentine clades were associated with Lambda sequences from Latin America and suggested an initial diversification in the Metropolitan Area of Buenos Aires before spreading to other regions in Argentina. Genetic analyses of genome sequences allowed us to describe the mutational patterns of the Argentine Lambda sequences and detect the emergence of rare mutations in an immunocompromised patient. Our study highlights the importance of genomic surveillance in identifying the introduction and geographical distribution of the SARS-CoV-2 Lambda variant, as well as in monitoring the emergence of mutations that could be involved in the evolutionary leaps that characterize variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Argentina/epidemiology , SARS-CoV-2/genetics , Phylogeny , COVID-19/epidemiology , Mutation
2.
Virus Res ; 325: 199035, 2023 02.
Article in English | MEDLINE | ID: mdl-36586487

ABSTRACT

INTRODUCTION: Coinfection with two SARS-CoV-2 viruses is still a very understudied phenomenon. Although next generation sequencing methods are very sensitive to detect heterogeneous viral populations in a sample, there is no standardized method for their characterization, so their clinical and epidemiological importance is unknown. MATERIAL AND METHODS: We developed VICOS (Viral COinfection Surveillance), a new bioinformatic algorithm for variant calling, filtering and statistical analysis to identify samples suspected of being mixed SARS-CoV-2 populations from a large dataset in the framework of a community genomic surveillance. VICOS was used to detect SARS-CoV-2 coinfections in a dataset of 1,097 complete genomes collected between March 2020 and August 2021 in Argentina. RESULTS: We detected 23 cases (2%) of SARS-CoV-2 coinfections. Detailed study of VICOS's results together with additional phylogenetic analysis revealed 3 cases of coinfections by two viruses of the same lineage, 2 cases by viruses of different genetic lineages, 13 were compatible with both coinfection and intra-host evolution, and 5 cases were likely a product of laboratory contamination. DISCUSSION: Intra-sample viral diversity provides important information to understand the transmission dynamics of SARS-CoV-2. Advanced bioinformatics tools, such as VICOS, are a necessary resource to help unveil the hidden diversity of SARS-CoV-2.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , Phylogeny , Genome, Viral , Computational Biology , Consensus Sequence
3.
Am J Med Genet A ; 188(11): 3153-3161, 2022 11.
Article in English | MEDLINE | ID: mdl-35979658

ABSTRACT

Dystrophic epidermolysis bullosa (DEB) is a clinically heterogeneous heritable skin disorder, characterized by blistering of the skin and mucous membranes following minor trauma. Dominant (DDEB) and recessive (RDEB) forms are caused by pathogenic variants in COL7A1 gene. Argentina's population has a heterogeneous genetic background, and little is known about the molecular basis of DEB in our country or in native South American populations. In this study, we present the prevalence and geographical distribution of pathogenic variants found in 181 patients from 136 unrelated families (31 DDEB and 105 RDEB). We detected 95 different variants, 59 of them were previously reported in the literature and 36 were novel, nine of which were detected in more than one family. The most prevalent pathogenic variants were identified in exon 73 in DDEB patients and in exon 3 in RDEB patients. We also report a new phenotype-genotype correlation found in 10 unrelated families presenting mild blistering and severe mucosal involvement. Molecular studies in populations with an unexplored genetic background like ours revealed a diversity of pathogenic variants, and we hope that these findings will contribute to the definition of targets for new gene therapies.


Subject(s)
Collagen Type VII , Epidermolysis Bullosa Dystrophica , Argentina/epidemiology , Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/genetics , Genetic Association Studies , Humans , Mutation , Phenotype
4.
Front Med (Lausanne) ; 8: 755463, 2021.
Article in English | MEDLINE | ID: mdl-34957143

ABSTRACT

SARS-CoV-2 variants with concerning characteristics have emerged since the end of 2020. Surveillance of SARS-CoV-2 variants was performed on a total of 4,851 samples from the capital city and 10 provinces of Argentina, during 51 epidemiological weeks (EWs) that covered the end of the first wave and the ongoing second wave of the COVID-19 pandemic in the country (EW 44/2020 to EW 41/2021). The surveillance strategy was mainly based on Sanger sequencing of a Spike coding region that allows the identification of signature mutations associated with variants. In addition, whole-genome sequences were obtained from 637 samples. The main variants found were Gamma and Lambda, and to a lesser extent, Alpha, Zeta, and Epsilon, and more recently, Delta. Whereas, Gamma dominated in different regions of the country, both Gamma and Lambda prevailed in the most populated area, the metropolitan region of Buenos Aires. The lineages that circulated on the first wave were replaced by emergent variants in a term of a few weeks. At the end of the ongoing second wave, Delta began to be detected, replacing Gamma and Lambda. This scenario is consistent with the Latin American variant landscape, so far characterized by a concurrent increase in Delta circulation and a stabilization in the number of cases. The cost-effective surveillance protocol presented here allowed for a rapid response in a resource-limited setting, added information on the expansion of Lambda in South America, and contributed to the implementation of public health measures to control the disease spread in Argentina.

5.
Pediatr Dermatol ; 37(2): 337-341, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31957900

ABSTRACT

BACKGROUND: Kindler syndrome is a rare genodermatosis. Major clinical criteria include acral blistering in infancy and childhood, progressive poikiloderma, skin atrophy, abnormal photosensitivity, and gingival fragility. METHODS: FERMT1 gene was sequenced in 5 patients with a clinical diagnosis of Kindler syndrome. RESULTS: We report a novel pathogenic variant detected in four unrelated families of Paraguayan origin, where one nucleotide deletion in FERMT1 gene (c.450delG) is predicted to cause a frameshift mutation leading to loss of function. Haplotype analysis revealed the propagation of an ancestral allele through this population. CONCLUSIONS: The identification of this recurrent pathogenic variant enables optimization of molecular detection strategies in our patients, reducing the cost of diagnosis.


Subject(s)
Blister/genetics , Blister/pathology , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/pathology , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Periodontal Diseases/genetics , Periodontal Diseases/pathology , Photosensitivity Disorders/genetics , Photosensitivity Disorders/pathology , Adolescent , Adult , Argentina , Child , Female , Humans , Male , Young Adult
6.
Emerg Infect Dis ; 23(10): 1684-1685, 2017 10.
Article in English | MEDLINE | ID: mdl-28930012

ABSTRACT

The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.


Subject(s)
Dengue Virus/genetics , Dengue/epidemiology , Disease Outbreaks , Phylogeny , Viral Envelope Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Argentina/epidemiology , Child , Child, Preschool , Dengue/transmission , Dengue/virology , Dengue Virus/classification , Dengue Virus/isolation & purification , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...