Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(48): 485706, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29120866

ABSTRACT

The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

2.
J Chem Phys ; 143(22): 224201, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26671368

ABSTRACT

Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

3.
Phys Rev B Condens Matter ; 40(18): 12520-12522, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-9991892
SELECTION OF CITATIONS
SEARCH DETAIL
...