Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4303, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383756

ABSTRACT

The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local/genetics , Cell Cycle , Cell Division , Epigenesis, Genetic , Brain Neoplasms/genetics , Cell Proliferation , Protein-Arginine N-Methyltransferases/metabolism
2.
Pharmaceutics ; 15(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242727

ABSTRACT

Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.

3.
Oncol Lett ; 25(4): 152, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936028

ABSTRACT

Immunotherapy using immune checkpoint inhibitors (ICIs) has significantly improved survival in patients with non-small cell lung cancer (NSCLC), and ICIs are increasingly used in combination with cytotoxic treatments, such as chemotherapy. Although combined treatments are more effective, not all patients respond to the therapy; therefore, a detailed understanding of the effect of treatment combinations at the tumour level is needed. The present study aimed to explore whether ICIs could affect the cytotoxic effects of chemotherapy on lung adenocarcinoma cell lines with different PD-L1 expression levels (high, HCC-44; low, A-549). Using the resazurin-based assay, the efficacy of seven chemotherapeutic agents (cisplatin, etoposide, gemcitabine, pemetrexed, vinorelbine, docetaxel and paclitaxel) was compared in the presence or absence of the individually chosen single doses of four ICIs (nivolumab, pembrolizumab, atezolizumab and durvalumab). The results revealed that different ICIs can exhibit either potentiating or depotentiating effects, depending on the chemotherapy agent or lung adenocarcinoma cell line used. Durvalumab was the most promising ICI, which potentiated most chemotherapy agents in both cell lines, especially in the case of high PD-L1 expression. By contrast, nivolumab, exhibited depotentiating trends in several combinations. The immunostaining of γH2AX in treated cells confirmed that the potentiation of the chemotherapeutic cytotoxicity by durvalumab was at least partially mediated via increased DNA damage; however, this effect was strongly dependent on the chemotherapy agent and cell line used. Our future studies aim to address the specific mechanisms underlying the observed ICI-induced potentiation or depotentiation.

4.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35448256

ABSTRACT

Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.


Subject(s)
Antineoplastic Agents , Xanthenes , Animals , Antineoplastic Agents/pharmacology , Biological Assay , Cell Survival , Mammals/metabolism , Oxazines , Xanthenes/metabolism , Xanthenes/pharmacology
5.
Sci Rep ; 11(1): 20338, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645858

ABSTRACT

Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms , Cell Cycle/drug effects , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma , Azacitidine/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Lomustine/pharmacology , Temozolomide/pharmacology
6.
Anticancer Res ; 38(11): 6209-6215, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30396939

ABSTRACT

BACKGROUND/AIM: More than half of prostate cancer patients use, in addition to conventional therapies, some kind of complementary medicine, including flavonoid-rich products. However, knowledge about the co-effects of flavonoids with cytotoxic chemotherapies is still rather poor. Therefore, this study was undertaken to assess the cytotoxic activity of flavonoids and their interactions with taxanes in human advanced prostate cancer cells. MATERIALS AND METHODS: Cytotoxicity of different flavonoids and their effects on the efficacy of docetaxel and cabazitaxel were studied in the human metastatic prostate cancer cell line PPC-1, using MTT colorimetric assay. RESULTS: Both taxanes suppressed the viability of PPC-1 cells with IC50 values in the nanomolar range. Tested flavonoids exerted cytotoxic activity only at high micromolar concentrations or revealed no remarkable effect on cell survival. Simultaneous treatment of cells with taxanes and flavonoids baicalein, chrysin, luteolin, fisetin, quercetin, genistein or daidzein did not lead to any change in chemotherapy-induced cytotoxicity. However, simultaneous exposure of cells to hesperetin and taxanes resulted in 9.8- and 13.1-fold reduction in cytotoxicity of docetaxel and cabazitaxel, respectively. CONCLUSION: Flavonoid hesperetin remarkably suppressed the cytotoxic efficacy of taxanes in prostate cancer cells. Therefore, caution is required from prostate cancer patients who take hesperetin-containing oral supplements.


Subject(s)
Dietary Supplements/adverse effects , Hesperidin/adverse effects , Prostatic Neoplasms/drug therapy , Taxoids/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Docetaxel , Drug Antagonism , Hesperidin/chemistry , Humans , Male , Taxoids/chemistry
7.
Oncol Lett ; 15(2): 1973-1978, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29399199

ABSTRACT

Lung cancer is the malignant disorder associated with a high number of fatalities in women and men worldwide. Despite continuous improvements in diagnostic strategies and therapeutic modalities over the past decades, the prognosis and survival rate of patients suffering from lung cancer are still unsatisfactory and suggest the requirement for further molecular studies with different lung cancer models. In the present study, the anticancer action of two methylated metabolites of quercetin, isorhamnetin and tamarixetin, was assessed by studying their antiproliferative and apoptosis-inducing potential in human lung adenocarcinoma cell lines, A549 and HCC-44. Both methylquercetins decreased the viability of lung cancer cells at doses significantly lower than those effective for parent quercetin. The IC50 values measured for isorhamnetin were 26.6 and 15.9 µM in A549 and HCC-44 cells, respectively. For tamarixetin, the IC50 values were 19.6 and 20.3 µM in A549 and HCC-44 cells, respectively. These results were many-fold lower than the respective values for quercetin (72.2 and 107.6 µM for A549 and HCC-44 cells, respectively). Based on the activation of caspase family members, both metabolites induced apoptotic cell death in the tested cell lines, predominantly via the extrinsic pathway in A549 cells and in both intrinsic and extrinsic pathways in HCC-44 cells. As A549 and HCC-44 lines were originally established from a male and female patient, current data may suggst some gender differences in the action of quercetin derivatives. Addition of a methyl group in the 3'- or 4'-position of the B-ring of quercetin significantly increased the anticancer activity of this flavonol towards lung adenocarcinoma cells, which demonstrated that these compounds may be considered as potential novel candidates for the development of future chemotherapeutics in the fight against lung cancer.

8.
Cytometry A ; 83(6): 585-91, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23606627

ABSTRACT

Natural killer (NK) cells are capable of lysing their target cells with the help of perforin. The application of these cells for immunotherapy requires the estimation of their potency for the purpose of validation and batch-to-batch comparison. Cytotoxicity measurements have been carried out at only a few effector target ratios, therefore, allowing only semiquantitative assessment at best. By using a novel approach of varying the effector target ratio continuously and careful analysis of the experimental data after the reactions, we have achieved a precision necessary for constructing a mathematical model of cytotoxic reaction. Curve-fitting to experimental data indicates that NK cell cytotoxicity follows the law of mass action and fits the model of a single ligand-receptor interaction. The method allows to use the value of half-maximal lysis to describe the potency of cytotoxic NK cells numerically.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Models, Statistical , Cell Line, Tumor , Coculture Techniques , Flow Cytometry , Gene Expression , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Killer Cells, Natural/cytology , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...