Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 18(9): 5539-5558, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36001344

ABSTRACT

Molecular assembly processes are generally driven by thermodynamic properties in solutions. Atomistic modeling can be very helpful in designing and understanding complex systems, except that bulk solvent is very inefficient to treat explicitly as discrete molecules. In this work, we develop and assess two multiscale solvation models for computing solvation thermodynamic properties. The new SLIC/CDC model combines continuum solvent electrostatics based on the solvent layer interface condition (SLIC) with new statistical thermodynamic models for hydrogen bonding and nonpolar modes: cavity formation, dispersion interactions, combinatorial mixing (CDC). Given the structures of 500 solutes, the SLIC/CDC model predicts Gibbs energies of solvation in water with an average accuracy better than 1 kcal/mol, when compared to experimental measurements, and better than 0.8 kcal/mol, when compared to explicit-solvent molecular dynamics simulations. The individual SLIC/CDC energy mode values agree quantitatively with those computed from explicit-solvent molecular dynamics. The previously published SLIC/SASA multiscale model combines the SLIC continuum electrostatic model with the solvent-accessible surface area (SASA) nonpolar energy mode. With our new, improved parametrization method, the SLIC/SASA model now predicts Gibbs energies of solvation with better than 1.4 kcal/mol average accuracy in aqueous systems, compared to experimental and explicit-solvent molecular dynamics, and better than 1.6 kcal/mol average accuracy in ionic liquids, compared to explicit-solvent molecular dynamics. Both models predict solvation entropies, and are the first implicit-solvation models capable of predicting solvation heat capacities.


Subject(s)
Ionic Liquids , Solutions , Solvents/chemistry , Thermodynamics , Water/chemistry
2.
Polymers (Basel) ; 13(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641202

ABSTRACT

Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction-separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters.

3.
ACS Nano ; 14(6): 7651-7658, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32438799

ABSTRACT

Layered systems of commonly available fabric materials can be used by the public and healthcare providers in face masks to reduce the risk of inhaling viruses with protection that is about equivalent to or better than the filtration and adsorption offered by 5-layer N95 respirators. Over 70 different common fabric combinations and masks were evaluated under steady-state, forced convection air flux with pulsed aerosols that simulate forceful respiration. The aerosols contain fluorescent virus-like nanoparticles to track transmission through materials that greatly assist the accuracy of detection, thus avoiding artifacts including pore flooding and the loss of aerosol due to evaporation and droplet breakup. Effective materials comprise both absorbent, hydrophilic layers and barrier, hydrophobic layers. Although the hydrophobic layers can adhere virus-like nanoparticles, they may also repel droplets from adjacent absorbent layers and prevent wicking transport across the fabric system. Effective designs are noted with absorbent layers comprising terry cloth towel, quilting cotton, and flannel. Effective designs are noted with barrier layers comprising nonwoven polypropylene, polyester, and polyaramid.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles , Aerosols , Air Microbiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/transmission , Filtration , Humans , In Vitro Techniques , Masks/supply & distribution , Nanoparticles/ultrastructure , Particle Size , Permeability , Pneumonia, Viral/transmission , SARS-CoV-2 , Water
4.
Int J Nanomedicine ; 15: 513-519, 2020.
Article in English | MEDLINE | ID: mdl-32099353

ABSTRACT

BACKGROUND: In recent years, numerous bacteria have become resistant to conventional antibiotics. Fortunately, an increasing body of research indicates that through the addition of specific metabolites (like sugars), the antibacterial activity of certain drugs can be enhanced. A new type of self-assembled nano-peptide amphiphile (SANPA) was designed in this study to treat antibiotic-resistant bacterial infections and to reduce the use of antibiotics. METHODS: Here, SANPAs were self-assembled into nanorod structures with a diameter of ca. 10.5 nm at concentrations greater than the critical micelle concentration (CMC) of 44.67 µM. Both Gram-positive and Gram-negative bacteria were treated with SANPAs with fructose supplementation. RESULTS: After a 30-min fructose pre-incubation, SANPAs reduced bacteria growth relative to non-fructose treatments at all concentrations. Cytotoxicity assays indicated that the presence of fructose seemed to slightly ameliorate the cytotoxic effect of the treatment on model human fetal osteoblasts (or bone-forming cells) and human dermal fibroblasts. CONCLUSION: We demonstrated here that SANPAs-like nanomaterials have a promising potential to treat antibiotic-resistant bacteria, especially when added to fructose, potentially limiting their associated infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Fructose/pharmacology , Peptides/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cells, Cultured , Escherichia coli/drug effects , Fibroblasts/drug effects , Fructose/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Nanostructures/chemistry , Peptides/pharmacology
5.
Nat Mater ; 2(3): 196-200, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12612679

ABSTRACT

Because of their extraordinary electronic and mechanical properties, carbon nanotubes have great potential as materials for applications ranging from molecular electronics to ultrasensitive biosensors. Biological molecules interacting with carbon nanotubes provide them with specific chemical handles that would make several of these applications possible. Here we use phage display to identify peptides with selective affinity for carbon nanotubes. Binding specificity has been confirmed by demonstrating direct attachment of nanotubes to phage and free peptides immobilized on microspheres. Consensus binding sequences show a motif rich in histidine and tryptophan, at specific locations. Our analysis of peptide conformations shows that the binding sequence is flexible and folds into a structure matching the geometry of carbon nanotubes. The hydrophobic structure of the peptide chains suggests that they act as symmetric detergents.


Subject(s)
Nanotubes, Carbon/metabolism , Peptides/chemical synthesis , Microspheres , Peptide Library , Peptides/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...