Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(2): 928-935, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33320524

ABSTRACT

It is predicted that the antibiotic resistance crisis will result in an annual death rate of 10 million people by the year 2050. To grapple with the challenges of the impending crisis, there is an urgent need for novel and rapid diagnostic tools. In this study, we developed a novel monoclonal antibody-named mAb-EspB-B7-that targets the EspB protein, a component within the bacterial type 3 secretion system (T3SS), which is mainly expressed in Gram-negative pathogens and is essential for bacterial infectivity. We found that mAb-EspB-B7 has high affinity and specificity toward recombinant and native EspB proteins; is stable over a range of pH levels, temperatures, and salt concentrations; and retains its functionality in human serum. We identified the epitope for mAb-EspB-B7 and validated it by competitive enzyme-linked immunosorbent assay (ELISA). Since this epitope is conserved across several T3SS-harboring pathogens, mAb-EspB-B7 holds great potential for development as an active component in precise and rapid diagnostic tools that can differentiate between commensal and pathogenic bacterial strains. To this end, we integrated the well-characterized monoclonal antibody into an electrochemical biosensor and demonstrated its high specificity and sensitivity capabilities in detecting pathogenic bacterial T3SS-associated antigens as well as intact bacteria. We foresee that in the near future it will be possible to design and develop a point-of-care biosensor with multiplexing capabilities for the detection of a panel of pathogenic bacteria.


Subject(s)
Antibodies, Monoclonal/blood , Biosensing Techniques , Electrochemical Techniques , Gram-Negative Bacteria/genetics , Point-of-Care Testing , Type III Secretion Systems/blood , Enzyme-Linked Immunosorbent Assay , Gram-Negative Bacteria/pathogenicity , Humans , Hydrogen-Ion Concentration , Temperature , Type III Secretion Systems/genetics
2.
Nanotechnology ; 30(28): 282001, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30909177

ABSTRACT

Antibodies are considered the hallmark of the adaptive immune system in that they mediate various key biological functions, such as direct neutralization and recruitment of effector immune cells to eliminate invading pathogens. Antibodies exhibit several unique properties, including high diversity (enabling binding to a wide range of targets), high specificity and structural integrity. These properties and the understanding that antibodies can be utilized in a wide range of applications have motivated the scientific community to develop new approaches for antibody repertoire analysis and rapid monoclonal antibody discovery. Today, antibodies are key modules in the pharmaceutical and diagnostic industries. By virtue of their high affinity and specificity to their targets and the availability of technologies to engineer different antibodies to a wide range of targets, antibodies have become the most promising natural biological molecules in a range of biotechnological applications, such as: highly specific and sensitive nanobiosensors for the diagnostics of different biomarkers; nanoparticle-based targeted drug delivery systems to certain cells or tissues; and nanomachines, which are nanoscale mechanical devices that enable energy conversion into precise mechanical motions in response to specific molecular inputs. In this review, we start by describing the unique properties of antibodies, how antibody diversity is generated, and the available technologies for antibody repertoire analysis and antibody discovery. Thereafter, we provide an overview of some antibody-based nanotechnologies and discuss novel and promising approaches for the application of antibodies in the nanotechnology field. Overall, we aim to bridge the knowledge gap between the nanotechnology and antibody engineering disciplines by demonstrating how technological advances in the antibody field can be leveraged to develop and/or enhance new technological approaches in the nanotechnology field.


Subject(s)
Antibodies/physiology , Bioengineering , Biotechnology , Nanotechnology , Animals , Biosensing Techniques , Drug Delivery Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...