Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 186: 104-115, 2018 09.
Article in English | MEDLINE | ID: mdl-29885553

ABSTRACT

The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-ß-lactamase and metallo-ß-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-ß-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Coordination Complexes , Gold , Gram-Positive Bacteria/growth & development , Phosphines , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Gold/chemistry , Gold/pharmacology , Humans , MCF-7 Cells , Phosphines/chemistry , Phosphines/pharmacology , Serum Albumin, Bovine/chemistry
2.
J Appl Microbiol ; 125(3): 777-791, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29762885

ABSTRACT

AIMS: Obtain varieties of Gluconacetobacter hansenii from original strain ATCC 23729 with greater efficiency to produce bacterial cellulose (BC) membrane with better dry mass yield for application as support of sustained antimicrobials' drug release. METHODS AND RESULTS: Application of different chemical and physical conditions (pH, temperature and UV light exposure) to obtain different G. hansenii varieties with high capacity to produce BC membranes. Characterization of the G. hansenii variants was performed by scanning electron microscopy (SEM) and optical microscopy of the colony-forming units. BC membrane produced was characterized by SEM, infrared spectroscopy and X-ray diffraction. The BC produced by variants isolated after incubation at 35°C showed elevated dry mass yield and high capacity of retention and sustained release of ceftriaxone antibiotic with the produced BC by original G. hansenii ATCC 23769 strain subjected to incubation at 28°C and with commercial BC. CONCLUSION: The application of different chemical and physical conditions constitutes an important method to obtain varieties of micro-organisms with dissimilar metabolism advantageous in relation to the original strain in the BC production. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate the importance of in vivo studies for the application, in medicine, of BC membranes as support for antimicrobial-sustained release for the skin wound treatment.


Subject(s)
Anti-Infective Agents/pharmacokinetics , Cellulose , Delayed-Action Preparations/chemistry , Gluconacetobacter , Ceftriaxone/pharmacokinetics , Cellulose/chemistry , Cellulose/metabolism , Cellulose/ultrastructure , Gluconacetobacter/chemistry , Gluconacetobacter/metabolism , Microscopy, Electron, Scanning , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...