Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Sci Signal ; 17(827): eade3643, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470955

ABSTRACT

Activation of the endoplasmic reticulum (ER)-resident adaptor protein STING, a component of a cytosolic DNA-sensing pathway, induces the transcription of genes encoding type I interferons (IFNs) and other proinflammatory factors. Because STING is activated at the Golgi apparatus, control of the localization and activation of STING is important in stimulating antiviral and antitumor immune responses. Through a genome-wide CRISPR interference screen, we found that STING activation required the Golgi-resident protein ACBD3, which promotes the generation of phosphatidylinositol 4-phosphate (PI4P) at the trans-Golgi network, as well as other PI4P-associated proteins. Appropriate localization and activation of STING at the Golgi apparatus required ACBD3 and the PI4P-generating kinase PI4KB. In contrast, STING activation was enhanced when the lipid-shuttling protein OSBP, which removes PI4P from the Golgi apparatus, was inhibited by the US Food and Drug Administration-approved antifungal itraconazole. The increase in the abundance of STING-activating phospholipids at the trans-Golgi network resulted in the increased production of IFN-ß and other cytokines in THP-1 cells. Furthermore, a mutant STING that could not bind to PI4P failed to traffic from the ER to the Golgi apparatus in response to a STING agonist, whereas forced relocalization of STING to PI4P-enriched areas elicited STING activation in the absence of stimulation with a STING agonist. Thus, PI4P is critical for STING activation, and manipulating PI4P abundance may therapeutically modulate STING-dependent immune responses.


Subject(s)
Golgi Apparatus , Phospholipids , Phospholipids/metabolism , Golgi Apparatus/metabolism , Adaptor Proteins, Signal Transducing/metabolism
4.
Cells ; 9(9)2020 08 29.
Article in English | MEDLINE | ID: mdl-32872420

ABSTRACT

The ongoing threat of viral infections and the emergence of antiviral drug resistance warrants a ceaseless search for new antiviral compounds. Broadly-inhibiting compounds that act on elements shared by many viruses are promising antiviral candidates. Here, we identify a peptide derived from the cowpox virus protein CPXV012 as a broad-spectrum antiviral peptide. We found that CPXV012 peptide hampers infection by a multitude of clinically and economically important enveloped viruses, including poxviruses, herpes simplex virus-1, hepatitis B virus, HIV-1, and Rift Valley fever virus. Infections with non-enveloped viruses such as Coxsackie B3 virus and adenovirus are not affected. The results furthermore suggest that viral particles are neutralized by direct interactions with CPXV012 peptide and that this cationic peptide may specifically bind to and disrupt membranes composed of the anionic phospholipid phosphatidylserine, an important component of many viral membranes. The combined results strongly suggest that CPXV012 peptide inhibits virus infections by direct interactions with phosphatidylserine in the viral envelope. These results reiterate the potential of cationic peptides as broadly-acting virus inhibitors.


Subject(s)
Antiviral Agents/therapeutic use , Peptides/metabolism , Phosphatidylserines/metabolism , Viral Envelope/metabolism , Antiviral Agents/pharmacology , Humans
5.
Nature ; 579(7800): E12, 2020 03.
Article in English | MEDLINE | ID: mdl-32144410

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Cells ; 8(12)2019 12 07.
Article in English | MEDLINE | ID: mdl-31817841

ABSTRACT

Transporter associated with antigen processing (TAP), a key player in the major histocompatibility complex class I-restricted antigen presentation, makes an attractive target for viruses that aim to escape the immune system. Mechanisms of TAP inhibition vary among virus species. Bovine herpesvirus 1 (BoHV-1) is unique in its ability to target TAP for proteasomal degradation following conformational arrest by the UL49.5 gene product. The exact mechanism of TAP removal still requires elucidation. For this purpose, a TAP-GFP (green fluorescent protein) fusion protein is instrumental, yet GFP-tagging may affect UL49.5-induced degradation. Therefore, we constructed a series of TAP-GFP variants using various linkers to obtain an optimal cellular fluorescent TAP platform. Mel JuSo (MJS) cells with CRISPR/Cas9 TAP1 or TAP2 knockouts were reconstituted with TAP-GFP constructs. Our results point towards a critical role of GFP localization on fluorescent properties of the fusion proteins and, in concert with the type of a linker, on the susceptibility to virally-induced inhibition and degradation. The fluorescent TAP platform was also used to re-evaluate TAP stability in the presence of other known viral TAP inhibitors, among which only UL49.5 was able to reduce TAP levels. Finally, we provide evidence that BoHV-1 UL49.5-induced TAP removal is p97-dependent, which indicates its degradation via endoplasmic reticulum-associated degradation (ERAD).


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 3/metabolism , Herpesvirus 1, Bovine/pathogenicity , ATP Binding Cassette Transporter, Subfamily B, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 3/antagonists & inhibitors , Acetanilides/pharmacology , Animals , Antigen Presentation/drug effects , Antigen Presentation/genetics , Benzothiazoles/pharmacology , Cattle , Cell Line , Cell Line, Tumor , Flow Cytometry , Fluorescent Antibody Technique , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immunoblotting , Immunoprecipitation , Plasmids/genetics
7.
Nature ; 573(7774): 434-438, 2019 09.
Article in English | MEDLINE | ID: mdl-31511694

ABSTRACT

The accumulation of DNA in the cytosol serves as a key immunostimulatory signal associated with infections, cancer and genomic damage1,2. Cytosolic DNA triggers immune responses by activating the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway3. The binding of DNA to cGAS activates its enzymatic activity, leading to the synthesis of a second messenger, cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP)4-7. This cyclic dinucleotide (CDN) activates STING8, which in turn activates the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), promoting the transcription of genes encoding type I interferons and other cytokines and mediators that stimulate a broader immune response. Exogenous 2'3'-cGAMP produced by malignant cells9 and other CDNs, including those produced by bacteria10-12 and synthetic CDNs used in cancer immunotherapy13,14, must traverse the cell membrane to activate STING in target cells. How these charged CDNs pass through the lipid bilayer is unknown. Here we used a genome-wide CRISPR-interference screen to identify the reduced folate carrier SLC19A1, a folate-organic phosphate antiporter, as the major transporter of CDNs. Depleting SLC19A1 in human cells inhibits CDN uptake and functional responses, and overexpressing SLC19A1 increases both uptake and functional responses. In human cell lines and primary cells ex vivo, CDN uptake is inhibited by folates as well as two medications approved for treatment of inflammatory diseases, sulfasalazine and the antifolate methotrexate. The identification of SLC19A1 as the major transporter of CDNs into cells has implications for the immunotherapeutic treatment of cancer13, host responsiveness to CDN-producing pathogenic microorganisms11 and-potentially-for some inflammatory diseases.


Subject(s)
DNA/metabolism , Nucleotides, Cyclic/metabolism , Reduced Folate Carrier Protein/metabolism , Animals , Cytosol , DNA/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Interferon Regulatory Factor-3/metabolism , Nucleotides, Cyclic/immunology , Nucleotidyltransferases/metabolism , Reduced Folate Carrier Protein/immunology
8.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996093

ABSTRACT

Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.


Subject(s)
Haploidy , Heparitin Sulfate/genetics , Heparitin Sulfate/isolation & purification , Pinocytosis/physiology , Vaccinia virus/genetics , Vaccinia virus/metabolism , Vaccinia/virology , Vesicular Transport Proteins/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Cowpox virus/genetics , DNA Viruses , Gene Knockout Techniques , Genetic Testing , Golgi Apparatus , HEK293 Cells , HeLa Cells , Heparitin Sulfate/metabolism , Host Specificity , Host-Pathogen Interactions , Humans , Membrane Proteins , Monkeypox virus/genetics , N-Acetylglucosaminyltransferases , Phosphatidylserines/metabolism , Poxviridae/genetics , Virus Attachment
9.
Immunol Cell Biol ; 96(2): 137-148, 2018 02.
Article in English | MEDLINE | ID: mdl-29363167

ABSTRACT

Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.


Subject(s)
Antigen Presentation/immunology , Cowpox virus/metabolism , Cross-Priming/immunology , Dendritic Cells/immunology , Endocytosis , Monocytes/cytology , Viral Proteins/metabolism , Amino Acid Sequence , Endosomes/metabolism , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Peptides/metabolism , Protein Domains , Solubility , Viral Proteins/chemistry
12.
Sci Rep ; 5: 12748, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26235972

ABSTRACT

Bovine Neonatal Pancytopenia (BNP), a fatal bleeding syndrome of neonatal calves, is caused by maternal alloantibodies absorbed from colostrum and is characterized by lymphocytopenia, thrombocytopenia and bone marrow hypoplasia. An inactivated viral vaccine is the likely source of alloantigens inducing BNP-associated alloantibodies in the dam. In this study the specificity of BNP alloantibodies was assessed and was linked to the pathology of BNP. We demonstrated that Major Histocompatibility Complex class I (MHC I) and Very Late Antigen-3, an integrin α3/ß1 heterodimer, were the major targets of BNP alloantibodies. However, alloantibody binding to various bovine cell types correlated with MHC I expression, rather than integrin ß1 or α3 expression. Likewise, alloantibody-dependent complement-mediated cell lysis correlated strongly with MHC I expression. Examination of several tissues of third trimester bovine foetuses revealed that cells, shown to be affected in calves with BNP, were characterized by high MHC class I expression and high levels of alloantibody binding. We conclude that in spite of the heterogeneous specificity of BNP associated maternal alloantibodies, MHC I-specific antibodies mediate the pathogenicity of BNP in the calf and that cells with high MHC I expression were preferentially affected in BNP.


Subject(s)
Cattle Diseases/immunology , Histocompatibility Antigens Class I/immunology , Isoantibodies/immunology , Pancytopenia/veterinary , Viral Vaccines/adverse effects , Animals , Antibody Specificity , Cattle , Cell Line , Female , Histocompatibility Antigens Class I/metabolism , Humans , Integrin beta1/immunology , Integrin beta1/metabolism , Pancytopenia/immunology , Pregnancy
13.
Semin Immunol ; 27(2): 125-37, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25887630

ABSTRACT

The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/immunology , Immune Evasion , Animals , Endoplasmic Reticulum/metabolism , Humans , Peptides/immunology , Viruses/immunology
14.
PLoS Pathog ; 11(4): e1004743, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25880312

ABSTRACT

Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.


Subject(s)
ATP-Binding Cassette Transporters/immunology , Immune Evasion/immunology , Viral Proteins/immunology , Virus Diseases/immunology , Animals , Biological Evolution , Humans , Immune Evasion/genetics , Phylogeny , Virus Diseases/genetics , Virus Latency/immunology
15.
J Immunol ; 193(4): 1578-89, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25024387

ABSTRACT

CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cowpox virus/immunology , Immune Evasion/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/immunology , ATP-Binding Cassette Transporters/antagonists & inhibitors , Antigen Presentation/genetics , Antigen Presentation/immunology , Cell Line, Tumor , Cell Membrane/metabolism , Cowpox virus/genetics , Endoplasmic Reticulum/immunology , Frameshift Mutation , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Humans , Protein Binding/immunology , Protein Transport/immunology , Viral Proteins/genetics
16.
Nat Commun ; 5: 3832, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24807418

ABSTRACT

Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. US11-mediated degradation of HLA class I has been instrumental in the identification of key components of mammalian ERAD, including Derlin-1, p97, VIMP and SEL1L. Despite this, the process governing retrotranslocation of the substrate is still poorly understood. Here using a high-coverage genome-wide shRNA library, we identify the uncharacterized protein TMEM129 and the ubiquitin-conjugating E2 enzyme UBE2J2 to be essential for US11-mediated HLA class I downregulation. TMEM129 is an unconventional C4C4-type RING finger E3 ubiquitin ligase that resides within a complex containing various other ERAD components, including Derlin-1, Derlin-2, VIMP and p97, indicating that TMEM129 is an integral part of the ER-resident dislocation complex mediating US11-induced HLA class I degradation.


Subject(s)
Histocompatibility Antigens Class I/biosynthesis , RNA Interference , RNA-Binding Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Viral Proteins/genetics , Adenosine Triphosphatases/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cytomegalovirus/genetics , Cytomegalovirus Infections , Down-Regulation , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum-Associated Degradation , HEK293 Cells , Humans , Membrane Proteins/genetics , Nuclear Proteins/genetics , Protein Folding , Proteins/genetics , RNA, Small Interfering , Selenoproteins/genetics , U937 Cells
17.
Mol Immunol ; 55(2): 139-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23141382

ABSTRACT

Following primary infection, herpesviruses persist for life in their hosts, even when vigorous anti-viral immunity has been induced. Failure of the host immune system to eliminate infected cells is facilitated by highly effective immune evasion strategies acquired by these herpesviruses during millions of years of co-evolution with their hosts. Here, we review the mechanisms of action of viral gene products that lead to cytotoxic T cell evasion through interference with the function of the transporter associated with antigen processing, TAP. The viral TAP inhibitors impede transport of peptides from the cytosol into the ER lumen, thereby preventing peptide loading onto MHC class I complexes. Recent insights have revealed a pattern of functional convergent evolution. In every herpesvirus subfamily, inhibitors of TAP function have been identified that are, surprisingly, unrelated in genome location, structure, and mechanism of action. Recently, cowpox virus has also been found to encode a TAP inhibitor. Expanding our knowledge on how viruses perturb antigen presentation, in particular by targeting TAP, not only provides information on viral pathogenesis, but also reveals novel aspects of the cellular processes corrupted by these viruses, notably the translocation of peptides by the ATP-binding cassette (ABC) transporter TAP. As the various TAP inhibitors are anticipated to impede discrete conformational transitions it is expected that crystal structures of TAP-inhibitor complexes will reveal valuable structural information on the actual mechanism of peptide translocation by TAP. Viral TAP inhibitors are also used for various (clinical) applications, for example, as effective tools in antigen presentation studies and as immunomodulators in immunotherapy for cancer, heterologous vaccination, and transplant protection.


Subject(s)
Antigen Presentation , Herpesviridae/immunology , Herpesviridae/pathogenicity , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/metabolism , Cowpox virus/genetics , Cowpox virus/immunology , Cowpox virus/metabolism , Herpesviridae/genetics , Herpesviridae/metabolism , Humans , Immune Evasion , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/immunology , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...