Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Protoc ; 7(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668137

ABSTRACT

To mineralize their shells, molluscs secrete a complex cocktail of proteins-collectively defined as the calcifying shell matrix-that remains occluded in the exoskeleton. Nowadays, protein extracts from shells are recognized as a potential source of bioactive substances, among which signalling molecules, bactericides or protease inhibitors offer the most tangible perspectives in applied sciences, health, and aquaculture. However, one technical obstacle in testing the activity of shell extracts lies in their high insolubility. In this paper, we present a protocol that circumvents this impediment. After an adapted shell protein extraction and the production of two organic fractions-one soluble, one insoluble-we employ a hand-operated tablet press machine to generate well-calibrated tablets composed of 100% insoluble shell matrix. FT-IR monitoring of the quality of the tablets shows that the pressure used in the press machine does not impair the molecular properties of the insoluble extracts. The produced tablets can be directly tested in different biological assays, such as the bactericidal inhibition zone assay in Petri dish, as illustrated here. Diverting the use of the hand-operated tablet press opens new perspectives in the analysis of insoluble shell matrices, for discovering novel bioactive components.

2.
Mar Biotechnol (NY) ; 26(3): 539-549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652191

ABSTRACT

Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.


Subject(s)
Animal Shells , Calcification, Physiologic , Calcium Carbonate , Osteoblasts , Pinctada , Animals , Mice , Osteoblasts/metabolism , Osteoblasts/drug effects , Pinctada/metabolism , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Calcification, Physiologic/drug effects , Animal Shells/chemistry , Cell Survival/drug effects , Cell Line , Extracellular Matrix/metabolism , Nacre/metabolism , Biomineralization
SELECTION OF CITATIONS
SEARCH DETAIL
...