Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Radiat Oncol ; 8(1): 101122, 2023.
Article in English | MEDLINE | ID: mdl-36479231

ABSTRACT

Purpose: Local tumor progression is a cause of significant morbidity and mortality in patients with pancreatic ductal adenocarcinoma (PDAC) with surgically unresectable disease. Novel and effective approaches to accomplish durable local control are urgently needed. We tested whether CPI-613 (devimistat), a first-in-class investigational small molecule inhibitor of mitochondrial metabolism, was capable of altering cancer cell energy metabolism and sensitizing PDAC cells to radiation therapy (RT). Methods and Materials: The effect of a combined treatment of RT with CPI-613 on the viability of, clonogenic potential of, and cell death induction in PDAC cells (MiaPaCa-2 and Panc-1) was determined using a trypan blue dye exclusion assay, a colony formation assay, and a 7-amino-actinomycin D assay, respectively. The synergistic effects of CPI-613-RT and chemotherapeutic agents (gemcitabine or 5-fluorouracil) were measured in MiaPaCa-2 cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and spheroid formation assay. Changes in energy metabolism were determined by profiling metabolites treated with either RT, CPI-613, or both using liquid chromatography-mass spectrometry. Results: This study demonstrates that a combination of single-fraction RT (2 and 10 Gy) with CPI-613 significantly inhibits PDAC cell growth compared with RT alone. Molecular analysis revealed inhibition of α-ketoglutarate dehydrogenase at the protein level. In addition, we demonstrate enhanced cell death of PDAC cells when treated with RT-CPI-613 combination. Targeted metabolomic analysis on PDAC cells post-CPI-613-RT treatment revealed alterations in key mitochondrial metabolites, with broader target engagement by the combination treatment, indicating the sensitization of CPI-613-treated PDAC cells to RT. Furthermore, a combination treatment of CPI-613 with either gemcitabine or 5-fluorouracil in the presence of 2 Gy RT synergistically inhibits PDAC cell proliferation. Conclusions: Our results support a novel combination of CPI-613-RT that warrants further preclinical and early-phase clinical investigations. A phase 1 trial designed to identify the maximum tolerated dose of CPI-613 in combination with chemo-RT in patients with PDAC was recently initiated (NCT05325281).

2.
Drug Metab Dispos ; 50(4): 361-373, 2022 04.
Article in English | MEDLINE | ID: mdl-35086846

ABSTRACT

CPI-613, an inhibitor of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) enzymes, is currently in development for the treatment of pancreatic cancer, acute myeloid leukemia, and other cancers. CPI-613 is an analog of lipoic acid, an essential cofactor for both PDH and KGDH. Metabolism and mass balance studies were conducted in rats after intravenous administration of [14C]-CPI-613. CPI-613 was eliminated via oxidative metabolism followed by excretion of the metabolites in feces (59%) and urine (22%). ß-Oxidation was the major pathway of elimination for CPI-613. The most abundant circulating components in rat plasma were those derived from ß-oxidation. In human hepatocytes, CPI-613 mainly underwent ß-oxidation (M1), sulfur oxidation (M2), and glucuronidation (M3). The Michaelis-Menten kinetics (Vmax and Km) of the metabolism of CPI-613 to these three metabolites predicted the fraction metabolized leading to the formation of M1, M2, and M3 to be 38%, 6%, and 56%, respectively. In humans, after intravenous administration of CPI-613, major circulating species in plasma were the parent and the ß-oxidation derived products. Thus, CPI-613 metabolites profiles in rat and human plasma were qualitatively similar. ß-Oxidation characteristics and excretion patterns of CPI-613 are discussed in comparison with those reported for its endogenous counterpart, lipoic acid. SIGNIFICANCE STATEMENT: This work highlights the clearance mechanism of CPI-613 via ß-oxidation, species differences in their ability to carry out ß-oxidation, and subsequent elimination routes. Structural limitations for completion of terminal cycle of ß-oxidation is discussed against the backdrop of its endogenous counterpart lipoic acid.


Subject(s)
Caprylates , Neoplasms , Animals , Caprylates/metabolism , Hepatocytes/metabolism , Humans , Neoplasms/metabolism , Rats , Sulfides/metabolism
3.
Future Oncol ; 15(28): 3189-3196, 2019 10.
Article in English | MEDLINE | ID: mdl-31512497

ABSTRACT

Devimistat (CPI-613®) is a novel lipoate analog that inhibits the tricarboxcylic acid cycle at two key carbon entry points. Through its inhibition of pyruvate dehydrogenase and a-ketoglutarate dehydrogenase complexes, devimistat inhibits the entry of glucose and glutamine derived carbons, respectively. Pancreatic cancer is dependent on mitochondrial function for enhanced survival and aggressiveness. In a Phase I study of modified FOLFIRINOX, in combination with devimistat for metastatic pancreatic cancer patients, there was a 61% objective response rate including a 17% complete response rate. This report outlines the rationale and design of the AVENGER 500 study, a Phase III clinical trial of devimistat in combination with modified FOLFIRINOX compared with FOLFIRINOX alone for patients with previously untreated metastatic adenocarcinoma of the pancreas. Clinical trial registration: NCT03504423.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Pancreatic Neoplasms/drug therapy , Adenocarcinoma/secondary , Adult , Aged , Caprylates/administration & dosage , Female , Fluorouracil/administration & dosage , Follow-Up Studies , Humans , International Agencies , Irinotecan/administration & dosage , Leucovorin/administration & dosage , Male , Middle Aged , Oxaliplatin/administration & dosage , Pancreatic Neoplasms/pathology , Prognosis , Prospective Studies , Sulfides/administration & dosage , Survival Rate
4.
Future Oncol ; 15(28): 3197-3208, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31512500

ABSTRACT

Devimistat (CPI-613®) is an intravenously administered, novel lipoate analog that inhibits two key tricarboxcylic acid (TCA) cycle enzymes, pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes (KGDH). These complexes control TCA cycle entry of glucose and glutamine-derived carbons, respectively. Acute myeloid leukemia (AML) cells upregulate the TCA cycle in response to DNA damaging agents and treatment with devimistat increases sensitivity to them. A Phase I study of devimistat in combination with cytarabine and mitoxantrone produced a complete remission rate of 50% in patients with relapsed or refractory AML. In the combined Phase I/II experience, older patients with R/R AML treated with 2000 mg/m2 of devimistat had a 52% complete remission/complete remission with incomplete hematologic recovery rate and a median survival of 12.4 months. This report outlines the rationale and design of the ARMADA 2000 study, a Phase III clinical trial of devimistat in combination with high dose cytarabine and mitoxantrone compared with high dose cytarabine and mitoxantrone alone for older patients (≥60 years of age) with relapsed or refractory AML. Clinical trial registration: NCT#03504410.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/drug therapy , Salvage Therapy , Aged , Caprylates/administration & dosage , Cytarabine/administration & dosage , Female , Follow-Up Studies , Humans , International Agencies , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mitoxantrone/administration & dosage , Neoplasm Recurrence, Local/pathology , Prognosis , Prospective Studies , Sulfides/administration & dosage , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...