Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Neurosci ; 105: 131-136, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183571

ABSTRACT

BACKGROUND: Current methods for quantitative assessment of cerebral small vessel disease (CSVD) ignore critical aspects of the disease, namely lesion type and regionality. We developed and tested a new scoring system for CSVD, "regional Cerebral Small Vessel Disease" (rCSVD) based on regional assessment of magnetic resonance imaging (MRI) features. METHODS: 141 patients were retrospectively included with a derivation cohort of 46 consecutive brain MRI exams and a validation cohort of 95 patients with known cerebrovascular disease. We compared the predictive value of rCSVD against existing scoring methods. We determined the predictive value of rCSVD score for all-cause mortality and recurrent strokes. RESULTS: 46 (44 male) veteran patients (age: 66-93 years), were included for derivation of the rCSVD score. A non-overlapping validation cohort consisted of 95 patients (89 male; age: 34-91 years) with known cerebrovascular disease were enrolled. Based on ROC analysis with comparison of AUC (Area Under the Curve), "rCSVD" score performed better compared to "total SVD score" and Fazekas score for predicting all-cause mortality (0.75 vs 0.68 vs 0.69; p = 0.046). "rCSVD" and total SVD scores were predictive of recurrent strokes in our validation cohort (p-values 0.004 and 0.001). At a median of 5.1 years (range 2-17 years) follow-up, Kaplan-Meier survival analysis demonstrated an rCSVD score of 2 to be a significant predictor of all-cause-mortality. CONCLUSION: "rCSVD" score can be derived from routine brain MRI, has value in risk stratification of patients at risk of CSVD, and has potential in clinical trials once fully validated in a larger patient cohort.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , Adult , Aged , Aged, 80 and over , Brain , Cerebral Small Vessel Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Stroke/diagnostic imaging
3.
Front Microbiol ; 9: 2179, 2018.
Article in English | MEDLINE | ID: mdl-30258428

ABSTRACT

The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from "curable" skin infections to only "manageable" pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria's high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen's phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, ß-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a ß-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...