Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Clin. transl. oncol. (Print) ; 26(3): 720-731, mar. 2024.
Article in English | IBECS | ID: ibc-230801

ABSTRACT

Purpose The International Extranodal Lymphoma Study Group (IELSG) score is widely used in clinical practice to stratify the risk of primary central nervous system lymphoma (PCNSL) patients. Our study aims to confirm and improve the IELSG score in PCNSL patients based on Chinese populations. Materials and methods A total of 79 PCNSL patients were retrospectively analyzed. All patients treated with high-dose methotrexate (HD-MTX)-based therapy collected clinical data. The receiver-operating characteristic (ROC) curve was used to determine the optimal cut-off values for the factors in IELSG score. Progression of disease (POD) at the most landmark time point was determine by Epanechnikov kernel and the area under the ROC curve (AUROC). Kaplan–Meier and multivariable regression methods were used to analyze survival data. Nomogram was generated for calculating the weight of each selected factor. Results The traditional IELSG score had no significant difference on OS and PFS except ECOG ≥ 2 and could not stratify the risk groups in PCNSL. The improved IELSG scoring system was established, which incorporated age ≥ 54 years, ECOG ≥ 2, deep brain structure, elevated CSF protein, and LDH/ULN > 0.75. On the other hand, POD18 was identified as a new powerful prognostic factor for PCNSL. In multivariate analysis, POD18 and the improved IELSG scoring system were independent prognostic factors for OS. Nomogram including the two significant variables showed the best performance (C-index = 0.828). Conclusions In this study, the IELSG score was improved and a new prognostic indicator POD18 was incorporated to construct a nomogram prognostic model, thereby further improving the predictive ability of the model (AU)


Subject(s)
Humans , Middle Aged , Composite Lymphoma/drug therapy , Composite Lymphoma/metabolism , Methotrexate/therapeutic use , Retrospective Studies , Treatment Outcome , Brain/metabolism , Prognosis
2.
Clin Transl Oncol ; 26(3): 720-731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37558851

ABSTRACT

PURPOSE: The International Extranodal Lymphoma Study Group (IELSG) score is widely used in clinical practice to stratify the risk of primary central nervous system lymphoma (PCNSL) patients. Our study aims to confirm and improve the IELSG score in PCNSL patients based on Chinese populations. MATERIALS AND METHODS: A total of 79 PCNSL patients were retrospectively analyzed. All patients treated with high-dose methotrexate (HD-MTX)-based therapy collected clinical data. The receiver-operating characteristic (ROC) curve was used to determine the optimal cut-off values for the factors in IELSG score. Progression of disease (POD) at the most landmark time point was determine by Epanechnikov kernel and the area under the ROC curve (AUROC). Kaplan-Meier and multivariable regression methods were used to analyze survival data. Nomogram was generated for calculating the weight of each selected factor. RESULTS: The traditional IELSG score had no significant difference on OS and PFS except ECOG ≥ 2 and could not stratify the risk groups in PCNSL. The improved IELSG scoring system was established, which incorporated age ≥ 54 years, ECOG ≥ 2, deep brain structure, elevated CSF protein, and LDH/ULN > 0.75. On the other hand, POD18 was identified as a new powerful prognostic factor for PCNSL. In multivariate analysis, POD18 and the improved IELSG scoring system were independent prognostic factors for OS. Nomogram including the two significant variables showed the best performance (C-index = 0.828). CONCLUSIONS: In this study, the IELSG score was improved and a new prognostic indicator POD18 was incorporated to construct a nomogram prognostic model, thereby further improving the predictive ability of the model.


Subject(s)
Central Nervous System Neoplasms , Lymphoma , Humans , Middle Aged , Prognosis , Retrospective Studies , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/pathology , Methotrexate/therapeutic use , Brain/metabolism , Lymphoma/metabolism
3.
Food Sci Nutr ; 8(10): 5195-5205, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33133523

ABSTRACT

Sargassum fusiforme, also known as Yangqicai () in Chinese and Hijiki in Japanese, is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries such as Japan, Korea, and China. The first use of S. fusiforme as a traditional Chinese medicinal plant was recorded in the Shennong Bencao Jing, dated 200 AD. It was referred to as Haizao (seaweed), renowned for treating Yinglu (tumor-like induration), dysuria, and edema. Currently, it is commonly used in traditional cuisine as it is rich in dietary fiber and minerals such as calcium, iron, and magnesium. Owing to its health benefits, S. fusiforme remains popular in China, Korea, and Japan, as well as in the UK and in North America. Currently, there is a lack of research on S. fusiforme; thus, we review the therapeutic effects of S. fusiforme, such as anticancer, antiangiogenic, and antiviral effects, in vitro and in vivo as reported during the past two decades. This review may promote further research on the therapeutic uses of S. fusiforme. Furthermore, we discuss the processes and considerations involved in using drugs produced from marine sources.

4.
Biomed Res Int ; 2020: 2417410, 2020.
Article in English | MEDLINE | ID: mdl-33110917

ABSTRACT

Sargassum fulvellum is a brown seaweed of the Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antimicrobial, antioxidant, antitumor, neuroprotective, anticoagulative, anti-inflammatory, and hepatoprotective activities. It has been widely used as a food additive and as a medicine in oriental medicine to treat lumps, dropsy, swelling, testicular pains, and urinary problems. S. fulvellum has been identified as a potential producer of a wide spectrum of natural compounds such as carotenoids, fucoidans, and phlorotannins, showing different biological activities in various industrial applications including pharmaceutical, nutraceutical, cosmeceutical, and functional food. However, the promising health effects associated with the extracts and compounds isolated from S. fulvellum have not been reviewed to date. The present review thus focuses on the biological activity of S. fulvellum as reported by previous publications, which include antioxidant, anticoagulant, anti-inflammatory, neuroprotective, immunomodulatory, antidiabetic, and anticancer effects. Thus, this review might serve to increase the utilization of this invaluable natural source as a potential component in pharmaceutical and nutraceutical applications.


Subject(s)
Biological Products/pharmacology , Pharmaceutical Preparations/administration & dosage , Sargassum/chemistry , Animals , Biological Products/chemistry , Dietary Supplements , Humans , Pharmaceutical Preparations/chemistry , Seaweed/chemistry
5.
Mar Drugs ; 17(9)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438588

ABSTRACT

Fucoidan is a polysaccharide largely made up of l-fucose and sulfate groups. Fucoidan is favorable worldwide, especially amongst the food and pharmaceutical industry as a consequence of its promising therapeutic effects. Its applaudable biological functions are ascribed to its unique biological structure. Classical bioactivities associated with fucoidan include anti-oxidant, anti-tumor, anti-coagulant, anti-thrombotic, immunoregulatory, anti-viral and anti-inflammatory effects. More recently, a variety of in vitro and in vivo studies have been carried out to further highlight its therapeutic potentials. This review focuses on the progress towards understanding fucoidan and its biological activities, which may be beneficial as a future therapy. Hence, we have summarized in vitro and in vivo studies that were done within the current decade. We expect this review and a variety of others can contribute as a theoretical basis for understanding and inspire further product development of fucoidan.


Subject(s)
Plant Extracts/pharmacology , Polysaccharides/pharmacology , Seaweed/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Distemper/drug therapy , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , HIV Infections/drug therapy , Hepatitis B/drug therapy , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Metabolic Syndrome/drug therapy , Neoplasms/drug therapy , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Vascular Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...