Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cancer Discov ; 10(9): 1296-1311, 2020 09.
Article in English | MEDLINE | ID: mdl-32371478

ABSTRACT

The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti-PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti-PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was sufficient to sensitize them to anti-PD-1. Our results thus establish a new role for the commonly inactivated tumor suppressor FBXW7 in viral sensing and sensitivity to immunotherapy. SIGNIFICANCE: Our findings establish a role of the commonly inactivated tumor suppressor FBXW7 as a genomic driver of response to anti-PD-1 therapy. Fbxw7 loss promotes resistance to anti-PD-1 through the downregulation of viral sensing pathways, suggesting that therapeutic reactivation of these pathways could improve clinical responses to checkpoint inhibitors in genomically defined cancer patient populations.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Drug Resistance, Neoplasm/genetics , F-Box-WD Repeat-Containing Protein 7/genetics , Immune Checkpoint Inhibitors/pharmacology , Skin Neoplasms/drug therapy , Aged , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Line, Tumor/transplantation , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Disease Models, Animal , F-Box-WD Repeat-Containing Protein 7/metabolism , Gene Expression Regulation, Neoplastic/immunology , HeLa Cells , Humans , Immune Checkpoint Inhibitors/therapeutic use , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Loss of Function Mutation , Male , Mice , Mutagenesis, Site-Directed , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
2.
PLoS One ; 9(6): e98515, 2014.
Article in English | MEDLINE | ID: mdl-24968263

ABSTRACT

Aberrant kinase activation resulting from mutation, amplification, or translocation can drive growth and survival in a subset of human cancer. FGFR2 is amplified in breast and gastric cancer, and we report here the first characterization of FGFR2 gene amplification in colorectal cancer in the NCI-H716 colorectal cancer cell line. FGFR2 is highly expressed and activated in NCI-H716 cells, and FGFR selective small molecule inhibitors or FGFR2 shRNA strongly inhibited cell viability in vitro, indicating "addiction" of NCI-H716 cells to FGFR2. NCI-H716 growth in a xenograft model was also inhibited by an FGFR small molecule inhibitor. FGFR2 was required for activation of multiple downstream signaling proteins including AKT, ERK, S6RP and NFKB. Inhibition of downstream kinases such as AKT or ERK alone had modest effects on proliferation, whereas combined inhibition of AKT and ERK signaling resulted in a loss of viability similar to FGFR2 inhibition. We identified elevated FGFR2 expression in a small subset of primary colorectal cancer, however FGFR2 amplification was not observed. Although FGFR2 amplification is not common in primary colon cancer or lymph node and liver metastases, other subsets of colorectal cancer such as ascites, from which the NCI-H716 cell line was derived, have yet to be tested. These results suggest that emerging FGFR inhibitor therapeutics may have efficacy in a subset of colon cancer driven by FGFR2 amplification.


Subject(s)
Cell Proliferation , Colorectal Neoplasms/genetics , Gene Amplification , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Cell Line, Tumor , Cell Survival , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Xenograft Model Antitumor Assays
3.
Cancer Discov ; 3(7): 742-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23614898

ABSTRACT

The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical efficacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identification and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF, NRAS, or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Kinase Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mutation , Neoplasms/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects
4.
J Med Chem ; 56(6): 2294-310, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23379595

ABSTRACT

This report documents the first example of a specific inhibitor of protein kinases with preferential binding to the activated kinase conformation: 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one 11r (MK-8033), a dual c-Met/Ron inhibitor under investigation as a treatment for cancer. The design of 11r was based on the desire to reduce time-dependent inhibition of CYP3A4 (TDI) by members of this structural class. A novel two-step protocol for the synthesis of benzylic sulfonamides was developed to access 11r and analogues. We provide a rationale for the observed selectivity based on X-ray crystallographic evidence and discuss selectivity trends with additional examples. Importantly, 11r provides full inhibition of tumor growth in a c-Met amplified (GTL-16) subcutaneous tumor xenograft model and may have an advantage over inactive form kinase inhibitors due to equal potency against a panel of oncogenic activating mutations of c-Met in contrast to c-Met inhibitors without preferential binding to the active kinase conformation.


Subject(s)
Benzocycloheptenes/metabolism , Benzocycloheptenes/pharmacology , Drug Discovery , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Sulfonamides/metabolism , Sulfonamides/pharmacology , Animals , Benzocycloheptenes/chemistry , Cell Line, Tumor , Dogs , Enzyme Activation/drug effects , Female , Humans , Mice , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/chemistry , Rats , Substrate Specificity , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
5.
J Med Chem ; 54(12): 4092-108, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21608528

ABSTRACT

c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzocycloheptenes/chemical synthesis , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzocycloheptenes/pharmacokinetics , Benzocycloheptenes/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Haplorhini , Humans , Mice , Mice, Nude , Models, Molecular , Mutation , Neoplasm Transplantation , Phosphorylation , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptor Protein-Tyrosine Kinases/genetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Transplantation, Heterologous
6.
J Biol Chem ; 286(8): 6433-48, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21118801

ABSTRACT

Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.


Subject(s)
Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Animals , Catalytic Domain/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor/methods , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
7.
Am J Pathol ; 177(1): 415-23, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20489150

ABSTRACT

Most non-small cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations respond to tyrosine kinase inhibitor (TKI) therapy. However, about 30% exhibit primary resistance to EGFR TKI therapy. Here we report that Met protein expression and phosphorylation were associated with primary resistance to EGFR TKI therapy in NSCLC patients harboring EGFR mutations, implicating Met as a de novo mechanism of resistance. In a separate patient cohort, Met expression and phosphorylation were also associated with development of NSCLC brain metastasis and were selectively enriched in brain metastases relative to paired primary lung tumors. A similar metastasis-specific activation of Met occurred in vitro in the isogenous cell lines H2073 and H1993, which are derived from the primary lung tumor and a metastasis, respectively, from the same patient. We conclude that Met activation is found in NSCLC before EGFR-targeted therapy and is associated with both primary resistance to EGFR inhibitor therapy and with the development of metastases. If confirmed in larger cohorts, our analysis suggests that patient tumors harboring both Met activation and EGFR mutation could potentially benefit from early intervention with a combination of EGFR and Met inhibitors.


Subject(s)
Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Enzyme Activation , ErbB Receptors/genetics , Female , Humans , In Situ Hybridization, Fluorescence , Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/genetics , Survival Rate
8.
Cancer Res ; 70(4): 1524-33, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20145145

ABSTRACT

The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Cells, Cultured , Dogs , Drug Delivery Systems/methods , Enzyme Activation/drug effects , Female , Haplorhini , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
9.
J Biomol Screen ; 13(9): 847-54, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18812567

ABSTRACT

Historically, only relatively low-throughput or expensive methods have been available to measure cell migration. Hepatocyte growth factor (HGF) is a ligand for the tyrosine kinase receptor Met that, in addition to mediating proliferation and survival, increases cell motility and metastasis. The authors have developed a high-throughput imaging assay for measuring inhibition of HGF-induced scattering in human HPAF-II pancreatic adenocarcinoma cells. Following treatment with test compounds and HGF for 24 h, cells are labeled with a nuclear stain and imaged at 10x magnification. The proximity of neighboring nuclei is measured, and the distribution of internuclear distances across each field of view is used to calculate the fraction of scattered cells. This method of analysis can be extended to other cell types and signaling pathways and, compared with other membrane-based migration assays currently available, the assay is significantly lower in cost, is less labor intensive, and provides higher throughput.


Subject(s)
Adenocarcinoma/metabolism , Hepatocyte Growth Factor/metabolism , Image Cytometry/instrumentation , Pancreatic Neoplasms/metabolism , Automation , Cell Line, Tumor , Cell Movement , Cell Nucleus/metabolism , Humans , Image Cytometry/methods , Image Processing, Computer-Assisted , Inhibitory Concentration 50 , Ligands , Models, Biological , Proto-Oncogene Proteins c-met/metabolism
10.
Cancer Res ; 68(7): 2340-8, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18381441

ABSTRACT

We have identified a critical role for amplified FGFR2 in gastric cancer cell proliferation and survival. In a panel of gastric cancer cell lines, fibroblast growth factor receptor 2 (FGFR2) was overexpressed and tyrosine phosphorylated selectively in FGFR2-amplified cell lines KatoIII, Snu16, and OCUM-2M. FGFR2 kinase inhibition by a specific small-molecule inhibitor resulted in selective and potent growth inhibition in FGFR2-amplified cell lines, resulting in growth arrest in KatoIII cells and prominent induction of apoptosis in both Snu16 and OCUM-2M cells. FGFR2-amplified cell lines also contained elevated phosphotyrosine in EGFR, Her2, and Erbb3, but the elevated phosphorylation in EGFR could not be inhibited by gefitinib or erlotinib. We show that the elevated EGFR, Her2, and Erbb3 phosphotyrosine is dependent on FGFR2, revealing EGFR family kinases to be downstream targets of amplified FGFR2. Moreover, shRNA to Erbb3 resulted in a loss of proliferation, confirming a functional role for the activated EGFR signaling pathway. These results reveal that both the FGFR2 and EGFR family signaling pathways are activated in FGFR2-amplified gastric cancer cell lines to drive cell proliferation and survival. Inhibitors of FGFR2 or Erbb3 signaling may have therapeutic efficacy in the subset of gastric cancers containing FGFR2 amplification.


Subject(s)
Receptor, ErbB-3/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Stomach Neoplasms/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Gene Amplification , Humans , Phosphorylation , Pyrimidines/pharmacology , RNA, Small Interfering/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/biosynthesis , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology
11.
Cancer Res ; 67(5): 2081-8, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17332337

ABSTRACT

Recent clinical successes of small-molecule epidermal growth factor receptor (EGFR) inhibitors in treating advanced non-small cell lung cancer (NSCLC) have raised hopes that the identification of other deregulated growth factor pathways in NSCLC will lead to new therapeutic options for NSCLC. Met, the receptor for hepatocyte growth factor, has been implicated in growth, invasion, and metastasis of many tumors including NSCLC. To assess the functional role for Met in NSCLC, we evaluated a panel of nine lung cancer cell lines for Met gene amplification, Met expression, Met pathway activation, and the sensitivity of the cell lines to short hairpin RNA (shRNA)-mediated Met knockdown. Two cell lines, EBC-1 and H1993, showed significant Met gene amplification and overexpressed Met receptors which were constitutively phosphorylated. The other seven lines did not exhibit Met amplification and expressed much lower levels of Met, which was phosphorylated only on addition of hepatocyte growth factor. We also found a strong up-regulation of tyrosine phosphorylation in beta-catenin and p120/delta-catenin in the Met-amplified EBC-1 and H1993 cell lines. ShRNA-mediated Met knockdown induced significant growth inhibition, G(1)-S arrest, and apoptosis in EBC-1 and H1993 cells, whereas it had little or no effect on the cell lines that do not have Met amplification. These results strongly suggest that Met amplification identifies a subset of NSCLC likely to respond to new molecular therapies targeting Met.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Gene Amplification , Lung Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Receptors, Growth Factor/genetics , Receptors, Growth Factor/physiology , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Humans , Lung Neoplasms/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-met , RNA, Small Interfering/pharmacology , Receptors, Growth Factor/antagonists & inhibitors
12.
Mol Cell Biol ; 23(2): 607-19, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12509458

ABSTRACT

Inversion(16) is one of the most frequent chromosomal translocations found in acute myeloid leukemia (AML), occurring in over 8% of AML cases. This translocation results in a protein product that fuses the first 165 amino acids of core binding factor beta to the coiled-coil region of a smooth muscle myosin heavy chain (CBFbeta/SMMHC). CBFbeta interacts with AML1 to form a heterodimer that binds DNA; this interaction increases the affinity of AML1 for DNA. The CBFbeta/SMMHC fusion protein cooperates with AML1 to repress the transcription of AML1-regulated genes. We show that CBFbeta/SMMHC contains a repression domain in the C-terminal 163 amino acids of the SMMHC region that is required for inv(16)-mediated transcriptional repression. This minimal repression domain is sufficient for the association of CBFbeta/SMMHC with the mSin3A corepressor. In addition, the inv(16) fusion protein specifically associates with histone deacetylase 8 (HDAC8). inv(16)-mediated repression is sensitive to HDAC inhibitors. We propose a model whereby the inv(16) fusion protein associates with AML1 to convert AML1 into a constitutive transcriptional repressor.


Subject(s)
Chromosome Inversion , DNA-Binding Proteins/chemistry , Leukemia, Myeloid, Acute/metabolism , Myosin Heavy Chains/chemistry , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins , Saccharomyces cerevisiae Proteins , Smooth Muscle Myosins/chemistry , Transcription Factors/chemistry , Transcription Factors/metabolism , 3T3 Cells , Animals , COS Cells , Core Binding Factor Alpha 2 Subunit , DNA-Binding Proteins/metabolism , Dimerization , Gene Deletion , Histone Deacetylases/metabolism , Humans , Immunoblotting , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex , Subcellular Fractions , Transcription, Genetic , Transfection
13.
Proc Natl Acad Sci U S A ; 99(24): 15434-9, 2002 Nov 26.
Article in English | MEDLINE | ID: mdl-12427969

ABSTRACT

Leukemic disease can be linked to aberrant gene expression. This often is the result of molecular alterations in transcription factors that lead to their misrouting within the nucleus. The acute myelogenous leukemia-related fusion protein AML1ETO is a striking example. It originates from a gene rearrangement t(8;21) that fuses the N-terminal part of the key hematopoietic regulatory factor AML1 (RUNX1) to the ETO (MTG8) repressor protein. AML1ETO lacks the intranuclear targeting signal of the wild-type AML1 and is directed by the ETO component to alternate nuclear matrix-associated sites. To understand this aberrant subnuclear trafficking of AML1ETO, we created a series of mutations in the ETO protein. These were characterized biochemically by immunoblotting and in situ by immunofluorescence microscopy. We identified two independent subnuclear targeting signals in the N- and C-terminal regions of ETO that together direct ETO to the same binding sites occupied by AML1ETO. However, each segment alone is targeted to a different intranuclear location. The N-terminal segment contains a nuclear localization signal and the conserved hydrophobic heptad repeat domain responsible for protein dimerization and interaction with the mSin3A transcriptional repressor. The C-terminal segment spans the nervy domain and the zinc finger region, which together support interactions with the corepressors N-CoR and HDACs. Our findings provide a molecular basis for aberrant subnuclear targeting of the AML1ETO protein, which is a principal defect in t(8;21)-related acute myelogenous leukemia.


Subject(s)
DNA-Binding Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins, Fusion/metabolism , Protein Sorting Signals/physiology , Proto-Oncogene Proteins , Repressor Proteins/metabolism , Transcription Factors/metabolism , Binding Sites , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit , DNA, Neoplasm/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Leukemia, Myeloid, Acute/genetics , Microscopy, Fluorescence , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Protein Sorting Signals/genetics , Protein Structure, Tertiary , Protein Transport , RUNX1 Translocation Partner 1 Protein , Recombinant Fusion Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Structure-Activity Relationship , Subcellular Fractions/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transfection , Translocation, Genetic , Tumor Cells, Cultured , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...