Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198881

ABSTRACT

Euterpe oleracea Mart. (Arecaceae) is an endogenous palm tree from the Amazon region. Its seeds correspond to 85% of the fruit's weight, a primary solid residue generated from pulp production, the accumulation of which represents a potential source of pollution and environmental problems. As such, this work aimed to quantify and determine the phytochemical composition of E. oleracea Mart. seeds from purple, white, and BRS-Pará açaí varieties using established analytical methods and also to evaluate it as an eco-friendly corrosion inhibitor. The proanthocyanidin quantification (n-butanol/hydrochloric acid assay) between varieties was 6.4-22.4 (w/w)/dry matter. Extract characterization showed that all varieties are composed of B-type procyanidin with a high mean degree of polymerization (mDP ≥ 10) by different analytical methodologies to ensure the results. The purple açaí extract, which presented 22.4% (w/w) proanthocyanidins/dry matter, was tested against corrosion of carbon steel AISI 1020 in neutral pH. The crude extract (1.0 g/L) was effective in controlling corrosion on the metal surface for 24 h. Our results demonstrated that the extracts rich in polymeric procyanidins obtained from industrial açaí waste could be used to inhibit carbon steel AISI 1020 in neutral pH as an abundant, inexpensive, and green source of corrosion inhibitor.


Subject(s)
Euterpe/chemistry , Proanthocyanidins/pharmacology , Steel/chemistry , Corrosion , Green Chemistry Technology , Plant Extracts/chemistry , Proanthocyanidins/chemistry , Seeds/chemistry
2.
Int J Dent ; 2018: 8303450, 2018.
Article in English | MEDLINE | ID: mdl-29861730

ABSTRACT

AIM: This study describes the biofilm formation and the corrosive capacity of sulfate-reducing bacteria (SRB) on the metallic structure of used endodontic files. METHODS: Sulfate-reducing bacteria (SRB) (Desulfovibrio desulfuricans oral and Desulfovibrio fairfieldensis or D. desulfuricans environmental) were inoculated into the culture media (Postgate C culture medium or modified Postgate E culture medium). The biocorrosive potential of these bacteria will be an important component of a biopharmaceutical under development called BACCOR. Afterwards, four used endodontic files (UEFs) were separately inoculated into a specific culture media for 445 days at 30°C in an incubator. The four UEFs were placed in a scanning electron microscope (SEM) and analyzed by the energy-dispersive X-ray spectrometry (EDS). RESULTS: The confocal laser scanning microscopic images indicate the presence of biofilm in the four samples. The SEM and SEM-EDS revealed the presence of rough, irregular structures adhering along the metallic surface of the used endodontic files, suggesting a mature calcified biofilm with a high concentration of Ca, P, C, and S. CONCLUSION: The formation of SRB biofilms on used endodontic files shows characteristics that may contribute to the biocorrosion of these files, and the results may also provide complementary data for a biopharmaceutical, which is still under development to assist in the removal of fractured endodontic files inside root channels.

3.
Dent Mater J ; 35(5): 762-768, 2016.
Article in English | MEDLINE | ID: mdl-27725513

ABSTRACT

This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.


Subject(s)
Cell Survival , Endodontics , Sulfur-Reducing Bacteria , Cell Line , Culture Media , Sulfates
4.
J Contemp Dent Pract ; 16(8): 665-73, 2015 08 01.
Article in English | MEDLINE | ID: mdl-26423503

ABSTRACT

AIM: This study assessed the biocorrosive capacity of two bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis on endodontic files, as a preliminary step in the development of a biopharmaceutical, to facilitate the removal of endodontic file fragments from root canals. MATERIALS AND METHODS: In the first stage, the corrosive potential of the artificial saliva medium (ASM), modified Postgate E medium (MPEM), 2.5 % sodium hypochlorite (NaOCl) solution and white medium (WM), without the inoculation of bacteria was assessed by immersion assays. In the second stage, test samples were inoculated with the two species of sulphur-reducing bacteria (SRB) on ASM and modified artificial saliva medium (MASM). In the third stage, test samples were inoculated with the same species on MPEM, ASM and MASM. All test samples were viewed under an infinite focus Alicona microscope. RESULTS: No test sample became corroded when immersed only in media, without bacteria. With the exception of one test sample between those inoculated with bacteria in ASM and MASM, there was no evidence of corrosion. Fifty percent of the test samples demonstrated a greater intensity of biocorrosion when compared with the initial assays. CONCLUSION: Desulfovibrio desulfuricans and D. fairfieldensis are capable of promoting biocorrosion of the steel constituent of endodontic files. CLINICAL SIGNIFICANCE: This study describes the initial development of a biopharmaceutical to facilitate the removal of endodontic file fragments from root canals, which can be successfully implicated in endodontic therapy in order to avoiding parendodontic surgery or even tooth loss in such events.


Subject(s)
Desulfovibrio/physiology , Endodontics/instrumentation , Root Canal Preparation/instrumentation , Sulfur-Reducing Bacteria/physiology , Corrosion , Desulfovibrio/classification , Desulfovibrio/drug effects , Endodontics/methods , Humans , Root Canal Preparation/methods , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...