Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Patient Exp ; 10: 23743735231151554, 2023.
Article in English | MEDLINE | ID: mdl-36741822

ABSTRACT

Patient-centric drug development is crucial to creating treatments that address unmet patient needs but is often ignored. The COPD Foundation's COPD360Net® includes a multistakeholder approach for operationalizing patient-centric development of treatments where patients, caregivers, scientists, and clinicians review opportunities based on scientific merit, potential to address an unmet need, and feasibility of adoption. COPD360Net deploys large-scale online community surveys to review profiles of potential therapies based on those criteria. This approach was implemented to inform the development of an intranasal spray to prevent viral respiratory infections (VRIs), a major cause of exacerbations in people with chronic lung diseases. Insights included: Of the 376 respondents with COPD surveyed, frequent exacerbators reported strong interest in a new type of antiviral nasal spray to prevent VRI.Patient survey and advisory committee insights demonstrated that a pan antiviral nasal spray has potential high value to both clinicians and patients and informed the COPD360Net decision to partner on its development.Including patient perspectives from the outset can be conducted efficiently by mobilizing an engaged online patient community.

2.
Pharmacol Res Perspect ; 6(3): e00400, 2018 06.
Article in English | MEDLINE | ID: mdl-29736245

ABSTRACT

Revefenacin (TD-4208) is a novel, long-acting, and lung-selective muscarinic cholinergic receptor (mAChR) antagonist in development as a nebulized inhalation solution for the treatment of chronic obstructive pulmonary disease (COPD) patients. This study evaluated the pharmacology of revefenacin at human recombinant mAChRs and in airway tissues from rats, guinea pigs, and humans. At human recombinant mAChRs, revefenacin displayed high affinity (pKI = 8.2-9.8) and behaved as a competitive antagonist (pKI, apparent = 9.4-10.9) at the five human recombinant mAChRs. Kinetic studies demonstrated that revefenacin dissociated significantly slower from the hM3 (t1/2 = 82 minutes) compared to the hM 2 (t1/2 = 6.9 minutes) mAChR at 37°C, thereby making it kinetically selective for the former subtype. Similarly, in functional studies, revefenacin-mediated antagonism of acetylcholine (ACh)-evoked calcium mobilization responses were reversed less rapidly at hM3 compared to the hM2 mAChR. In isolated tracheal tissues from rat and guinea pig and isolated bronchial tissues from humans, revefenacin potently antagonized mAChR-mediated contractile responses. Furthermore, the antagonistic effects of revefenacin in rat, guinea pig, and human airway tissues were slowly reversible (t1/2 of 13.3, >16, and >10 hours, respectively). These data demonstrate that revefenacin is a potent, high affinity, and selective functional mAChR antagonist with kinetic selectivity for the hM3 receptor and produces potent and long-lasting antagonism of mAChR-mediated contractile responses in rat, guinea pig, and human airway tissue. These data suggest that revefenacin has the potential to be a potent once-daily dosed inhaled bronchodilator in COPD patients.


Subject(s)
Benzamides/pharmacology , Bronchi/physiology , Carbamates/pharmacology , Muscarinic Antagonists/pharmacology , Recombinant Proteins/metabolism , Trachea/physiology , Administration, Inhalation , Animals , Bronchi/drug effects , Guinea Pigs , Humans , Nebulizers and Vaporizers , Rats , Trachea/drug effects
3.
J Pharmacol Exp Ther ; 349(1): 118-25, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24504097

ABSTRACT

Prior studies have demonstrated that the ion channel transient receptor potential vanilloid 4 (TRPV4) is functionally expressed in airway smooth muscle cells and that TRPV4 single nucleotide polymorphisms are associated with airflow obstruction in patients with chronic obstructive pulmonary disease. We sought to use isometric tension measurements in ex vivo airways to determine whether short-term pharmacological activation of TRPV4 with the potent agonist GSK1016790 [N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide] would constrict human bronchial tissue. As predicted, transient receptor potential vanilloid 4 activation in the human airway produces contractions that are blocked by the nonselective transient receptor potential channel blocker ruthenium red. Moreover, the novel TRPV4-selective blocker GSK2334775 [(R)-6-(methylsulfonyl)-3-((4-(pyrrolidin-1-yl)piperindin-1-yl)methyl)-N-(2,2,2,-trifluoro-1-phenylethyl)-2-(3-(trifluoromethyl)phenyl)quinoline-4-carboxamide] inhibited these contractions over a concentration range consistent with its in vitro potency against recombinant and native TRPV4-containing channels. Surprisingly, TRPV4-dependent contractions were also blocked by a 5-lipoxygenase inhibitor and two structurally distinct cysteinyl leukotriene 1 receptor antagonists. In aggregate, our results fail to support the hypothesis that TRPV4 in airway smooth muscle cells regulates airway contractility short term. Rather, we provide pharmacological evidence that TRPV4 activation causes human airway constriction that is entirely dependent upon the production of cysteinyl leukotrienes. Together, these data identify a novel mechanism by which TRPV4 activation may contribute to pathologic remodeling and inflammation, in addition to airflow obstruction, in the diseased human respiratory tract.


Subject(s)
Bronchi/drug effects , Bronchoconstriction/drug effects , Cysteine/metabolism , Leucine/analogs & derivatives , Leukotrienes/metabolism , Sulfonamides/pharmacology , TRPV Cation Channels/agonists , Adult , Animals , Arachidonate 5-Lipoxygenase/metabolism , Bronchi/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoconstriction/physiology , Calcium/metabolism , Dose-Response Relationship, Drug , Female , Guinea Pigs , Humans , In Vitro Techniques , Leucine/pharmacology , Lipoxygenase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Leukotriene/metabolism , Ruthenium Red/pharmacology , Species Specificity , Sulfones/pharmacology , TRPV Cation Channels/antagonists & inhibitors
4.
J Pharmacol Exp Ther ; 345(2): 260-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23435542

ABSTRACT

Activation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.2]octane; umeclidinium). The affinity (Ki) of GSK573719 for the cloned human M1-M5 mAChRs ranged from 0.05 to 0.16 nM. Dissociation of [(3)H]GSK573719 from the M3 mAChR was slower than that for the M2 mAChR [half-life (t1/2) values: 82 and 9 minutes, respectively]. In Chinese hamster ovary cells transfected with recombinant human M3 mAChRs, GSK573719 demonstrated picomolar potency (-log pA2 = 23.9 pM) in an acetylcholine (Ach)-mediated Ca(2+) mobilization assay. Concentration-response curves indicate competitive antagonism with partial reversibility after drug washout. Using isolated human bronchial strips, GSK573719 was also potent and showed competitive antagonism (-log pA2 = 316 pM) versus carbachol, and was slowly reversible in a concentration-dependent manner (1-100 nM). The time to 50% restoration of contraction at 10 nM was about 381 minutes (versus 413 minutes for tiotropium bromide). In mice, the ED50 value was 0.02 µg/mouse intranasally. In conscious guinea pigs, intratracheal administration of GSK573719 dose dependently blocked Ach-induced bronchoconstriction with long duration of action, and was comparable to tiotropium; 2.5 µg elicited 50% bronchoprotection for >24 hours. Thus, GSK573719 is a potent anticholinergic agent that demonstrates slow functional reversibility at the human M3 mAChR and long duration of action in animal models. This pharmacological profile translated into a 24-hour duration of bronchodilation in vivo, which suggested umeclidinium will be a once-daily inhaled treatment of pulmonary diseases.


Subject(s)
Lung Diseases/drug therapy , Muscarinic Antagonists/therapeutic use , Quinuclidines/therapeutic use , Administration, Inhalation , Animals , CHO Cells , Calcium/metabolism , Carbachol/pharmacology , Cholinergic Antagonists/pharmacology , Cricetinae , Cricetulus , Guinea Pigs , Kinetics , Lung/drug effects , Mice , Mice, Inbred BALB C , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/administration & dosage , Plethysmography , Quinuclidines/administration & dosage , Receptor, Muscarinic M3/drug effects , Receptors, Muscarinic , Scopolamine Derivatives/pharmacology , Tiotropium Bromide
5.
Bioorg Med Chem Lett ; 22(9): 3366-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22460029

ABSTRACT

A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.


Subject(s)
Muscarinic Antagonists/chemical synthesis , Tropanes/chemical synthesis , Animals , Bronchial Diseases/drug therapy , Drug Design , Mice , Muscarinic Antagonists/pharmacology , Receptors, Muscarinic/drug effects , Structure-Activity Relationship , Tropanes/pharmacology
6.
Eur J Pharmacol ; 670(2-3): 586-92, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-21946109

ABSTRACT

Azelastine is a selective antagonist at the human histamine-1 receptor and is used clinically in the treatment of allergic rhinitis. In this study we have investigated its duration of action in vitro in an effort to characterise the receptor and tissue components involved. Chinese hamster ovary cell membrane fragments were used to determine the kinetics of azelastine at the H1 receptor in a radioligand binding assay. Further duration of action studies were completed in tissue preparations using guinea-pig trachea and human bronchus. In radioligand binding studies, azelastine reached steady state at the H1 receptor after approximately 41 min and exhibited a significantly slower dissociation rate constant from the receptor than the first generation antihistamine, diphenhydramine. In washout studies completed in guinea-pig and human airway in vitro tissue preparations, azelastine continued to antagonise the effects of histamine at the H1 receptor for at least 18 h post-washout of the antagonist. This outcome was reversed following removal of the epithelium from guinea-pig isolated tracheal strips. These studies indicate there is a tissue component contributing to azelastine's duration of action, in addition to its direct H1 receptor binding, with evidence suggesting a role for the epithelial layer.


Subject(s)
Histamine H1 Antagonists/metabolism , Histamine H1 Antagonists/pharmacology , Phthalazines/metabolism , Phthalazines/pharmacology , Receptors, Histamine H1/metabolism , Animals , Bronchi/drug effects , Bronchi/metabolism , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Kinetics
7.
J Med Chem ; 52(16): 5241-52, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19630384
8.
J Med Chem ; 52(8): 2493-505, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19317446

ABSTRACT

A novel 4-hydroxyl(diphenyl)methyl substituted quinuclidine series was discovered as a very promising class of muscarinic antagonists. The structure-activity relationships of the connectivity of the diphenyl moiety to the quinuclidine core and around the ring nitrogen side chain are described. Computational docking studies using an homology model of the M(3) receptor readily explained the observed structure-activity relationship of the various compounds. Compound 14o was identified as a very potent, slowly reversible M(3) antagonist with a very long in vivo duration of bronchoprotection.


Subject(s)
Benzhydryl Compounds/chemical synthesis , Bronchodilator Agents/chemical synthesis , Quinuclidines/chemical synthesis , Receptor, Muscarinic M3/antagonists & inhibitors , Animals , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Biological Availability , Bronchi/drug effects , Bronchi/physiology , Bronchoconstriction/drug effects , Bronchodilator Agents/chemistry , Bronchodilator Agents/pharmacology , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Mice , Models, Molecular , Muscle Contraction , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Quinuclidines/chemistry , Quinuclidines/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
9.
J Pharmacol Exp Ther ; 300(1): 314-23, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752131

ABSTRACT

In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.


Subject(s)
Acetates/pharmacology , Antitussive Agents/pharmacology , Bronchial Hyperreactivity/prevention & control , Cough/prevention & control , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Receptors, Tachykinin/antagonists & inhibitors , Substance P/analogs & derivatives , Animals , Behavior, Animal , Bronchial Hyperreactivity/chemically induced , Calcium/metabolism , Central Nervous System/drug effects , Central Nervous System/metabolism , Citric Acid , Cloning, Molecular , Cough/chemically induced , Guinea Pigs , In Vitro Techniques , Iris/drug effects , Male , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Neurokinin A/pharmacology , Peptide Fragments/pharmacology , Pupil/drug effects , Rabbits , Radioligand Assay , Rats , Recombinant Proteins/metabolism , Substance P/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...