Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(13): 7522-7, 2001 Jun 19.
Article in English | MEDLINE | ID: mdl-11390966

ABSTRACT

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.


Subject(s)
Glucose/metabolism , Insulin Resistance/physiology , Lipoprotein Lipase/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Fatty Acids, Nonesterified/blood , Glucagon/blood , Glucose Clamp Technique , Glucose Tolerance Test , Heterozygote , Insulin/pharmacology , Insulin/physiology , Insulin Receptor Substrate Proteins , Insulin Resistance/genetics , Leptin/blood , Lipoprotein Lipase/genetics , Mice , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/ultrastructure , Organ Specificity , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Signal Transduction , Triglycerides/blood
2.
J Clin Invest ; 107(9): 1183-92, 2001 May.
Article in English | MEDLINE | ID: mdl-11342582

ABSTRACT

Lipoprotein lipase (LpL) binding to heparan sulfate proteoglycans (HSPGs) is hypothesized to stabilize the enzyme, localize LpL in specific capillary beds, and route lipoprotein lipids to the underlying tissues. To test these hypotheses in vivo, we created mice expressing a human LpL minigene (hLpL(HBM)) carrying a mutated heparin-binding site. Three basic amino acids in the carboxyl terminal region of LpL were mutated, yielding an active enzyme with reduced heparin binding. Mice expressing hLpL(HBM) accumulated inactive human LpL (hLpL) protein in preheparin blood. hLpL(HBM) rapidly lost activity during a 37 degrees C incubation, confirming a requirement for heparin binding to stabilize LPL: Nevertheless, expression of hLpL(HBM) prevented the neonatal demise of LpL knockout mice. On the LpL-deficient background hLpL(HBM) expression led to defective targeting of lipids to tissues. Compared with mice expressing native hLpL in the muscle, hLpL(HBM) transgenic mice had increased postprandial FFAs, decreased lipid uptake in muscle tissue, and increased lipid uptake in kidneys. Thus, heparin association is required for LpL stability and normal physiologic functions. These experiments confirm in vivo that association with HSPGs can provide a means to maintain proteins in their stable conformations and to anchor them at sites where their activity is required.


Subject(s)
Heparan Sulfate Proteoglycans/metabolism , Heparin/metabolism , Lipoprotein Lipase/metabolism , Amino Acids, Diamino/genetics , Animals , Binding Sites/genetics , Blotting, Northern , Chromatography, Affinity , Chylomicrons/metabolism , Enzyme Stability , Fat Emulsions, Intravenous/metabolism , Female , Humans , Lipoprotein Lipase/blood , Lipoprotein Lipase/genetics , Mice , Mice, Transgenic , Muscles/metabolism , Muscles/pathology , Mutation , Palmitates/metabolism
3.
J Biol Chem ; 276(12): 8934-41, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11121409

ABSTRACT

Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.


Subject(s)
Endothelium, Vascular/enzymology , Heparan Sulfate Proteoglycans/metabolism , Lipoprotein Lipase/metabolism , Receptors, LDL/metabolism , Animals , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Heymann Nephritis Antigenic Complex , Hot Temperature , Iodine Radioisotopes , Lipoprotein Lipase/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Protein Transport
4.
Curr Opin Lipidol ; 11(3): 235-41, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10882338

ABSTRACT

Several lines of clinical and experimental data suggest that postprandial lipemia is an independent risk factor for atherosclerosis. There are a number of reasons why processes that occur in the period immediately after eating could be deleterious to arteries. By understanding the links between postprandial lipemia and the accumulation of lipid within vessels, a more global understanding of how lipoproteins cause disease may be forthcoming. In this article recent information on the control of postprandial lipemia and the biological effects of chylomicron remnants and lipolysis products will be reviewed. Because this topic is broad, we will focus on the roles played by lipoprotein lipase and proteoglycans in this process.


Subject(s)
Arteriosclerosis/metabolism , Lipoproteins/metabolism , Postprandial Period , Animals , Arteriosclerosis/etiology , Arteriosclerosis/pathology , Humans , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Lipolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...