Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909572

ABSTRACT

Oxygen therapeutics have a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all-natural or semi-synthetic hemoglobin-based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products were removed from the market due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers, where immune responses and circulation times remain a challenge. This work looks to leverage the properties of silk fibroin, a cytocompatible and non-thrombogenic biopolymer, known to entrap protein-based cargo, to engineer a silk fibroin-hemoglobin-based oxygen carrier (sfHBOC). Herein, an all-aqueous solvent evaporation technique was used to form silk fibroin particles with and without hemoglobin to tailor the formulation for specific particle sizes. The encapsulation efficiency and ferrous state of hemoglobin were analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 µg/mL active hemoglobin in certain sfHBOC formulations. The system did not elicit a strong inflammation response in vitro, demonstrating the potential for this particle system to serve as an injectable HBOC.

2.
Adv Nanobiomed Res ; 3(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-38708087

ABSTRACT

Oxygen therapeutics have a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all-natural or semi-synthetic hemoglobin-based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products stalled in development due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers. This work leverages the properties of silk fibroin, a cytocompatible and non-thrombogenic biopolymer, known to entrap protein-based cargo, to engineer a fully protein-based oxygen carrier. Herein, an all-aqueous solvent evaporation technique was used to form silk particles via phase separation from a bulk polyvinyl alcohol phase (PVA). Particles size was tuned, and particles were formed with and without hemoglobin. The encapsulation efficiency and ferrous state of hemoglobin were analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 µg/mL active hemoglobin in certain sfHBOC formulations. The system did not elicit a strong inflammation response in vitro, demonstrating the potential for this particle system to serve as an injectable HBOC.

SELECTION OF CITATIONS
SEARCH DETAIL
...