Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Syst Evol ; 7: 255-343, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34124627

ABSTRACT

An order, family and genus are validated, seven new genera, 35 new species, two new combinations, two epitypes, two lectotypes, and 17 interesting new host and / or geographical records are introduced in this study. Validated order, family and genus: Superstratomycetales and Superstratomycetaceae (based on Superstratomyces ). New genera: Haudseptoria (based on Haudseptoria typhae); Hogelandia (based on Hogelandia lambearum); Neoscirrhia (based on Neoscirrhia osmundae); Nothoanungitopsis (based on Nothoanungitopsis urophyllae); Nothomicrosphaeropsis (based on Nothomicrosphaeropsis welwitschiae); Populomyces (based on Populomyces zwinianus); Pseudoacrospermum (based on Pseudoacrospermum goniomae). New species: Apiospora sasae on dead culms of Sasa veitchii (Netherlands); Apiospora stipae on dead culms of Stipa gigantea (Spain); Bagadiella eucalyptorum on leaves of Eucalyptus sp. (Australia); Calonectria singaporensis from submerged leaf litter (Singapore); Castanediella neomalaysiana on leaves of Eucalyptus sp. (Malaysia); Colletotrichum pleopeltidis on leaves of Pleopeltis sp. (South Africa); Coniochaeta deborreae from soil (Netherlands); Diaporthe durionigena on branches of Durio zibethinus (Vietnam); Floricola juncicola on dead culm of Juncus sp. (France); Haudseptoria typhae on leaf sheath of Typha sp. (Germany); Hogelandia lambearum from soil (Netherlands); Lomentospora valparaisensis from soil (Chile); Neofusicoccum mystacidii on dead stems of Mystacidium capense (South Africa); Neomycosphaerella guibourtiae on leaves of Guibourtia sp. (Angola); Niesslia neoexosporioides on dead leaves of Carex paniculata (Germany); Nothoanungitopsis urophyllae on seed capsules of Eucalyptus urophylla (South Africa); Nothomicrosphaeropsis welwitschiae on dead leaves of Welwitschia mirabilis (Namibia); Paracremonium bendijkiorum from soil (Netherlands); Paraphoma ledniceana on dead wood of Buxus sempervirens (Czech Republic); Paraphoma salicis on leaves of Salix cf. alba (Ukraine); Parasarocladium wereldwijsianum from soil (Netherlands); Peziza ligni on masonry and plastering (France); Phyllosticta phoenicis on leaves of Phoenix reclinata (South Africa); Plectosphaerella slobbergiarum from soil (Netherlands); Populomyces zwinianus from soil (Netherlands); Pseudoacrospermum goniomae on leaves of Gonioma kamassi (South Africa); Pseudopyricularia festucae on leaves of Festuca californica (USA); Sarocladium sasijaorum from soil (Netherlands); Sporothrix hypoxyli in sporocarp of Hypoxylon petriniae on Fraxinus wood (Netherlands); Superstratomyces albomucosus on Pycnanthus angolensis (Netherlands); Superstratomyces atroviridis on Pinus sylvestris (Netherlands); Superstratomyces flavomucosus on leaf of Hakea multilinearis (Australia); Superstratomyces tardicrescens from human eye specimen (USA); Taeniolella platani on twig of Platanus hispanica (Germany), and Tympanis pini on twigs of Pinus sylvestris (Spain). Citation: Crous PW, Hernández-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kölling G, Marais E, Wingfield MJ, Yilmaz N, Adan OCG, Akulov A, Álvarez Duarte E, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken JAMP, Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spetik M, Thangavel R, Thanh HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, Groenewald JZ (2021). New and Interesting Fungi. 4. Fungal Systematics and Evolution 7: 255-343. doi: 10.3114/fuse.2021.07.13.

2.
Stud Mycol ; 85: 107-124, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28050056

ABSTRACT

A culture-based survey of staining fungi on oil-treated timber after outdoor exposure in Australia and the Netherlands uncovered new taxa in Pezizomycotina. Their taxonomic novelty was confirmed by phylogenetic analyses of multi-locus sequences (ITS, nrSSU, nrLSU, mitSSU, RPB1, RPB2, and EF-1α) using multiple reference data sets. These previously unknown taxa are recognised as part of a new order (Superstratomycetales) potentially closely related to Trypetheliales (Dothideomycetes), and as a new species of Cyanodermella, C. oleoligni in Stictidaceae (Ostropales) part of the mostly lichenised class Lecanoromycetes. Within Superstratomycetales a single genus named Superstratomyces with three putative species: S. flavomucosus, S. atroviridis, and S. albomucosus are formally described. Monophyly of each circumscribed Superstratomyces species was highly supported and the intraspecific genetic variation was substantially lower than interspecific differences detected among species based on the ITS, nrLSU, and EF-1α loci. Ribosomal loci for all members of Superstratomyces were noticeably different from all fungal sequences available in GenBank. All strains from this genus grow slowly in culture, have darkly pigmented mycelia and produce pycnidia. The strains of C. oleoligni form green colonies with slimy masses and develop green pycnidia on oatmeal agar. These new taxa could not be classified reliably at the class and lower taxonomic ranks by sequencing from the substrate directly or based solely on culture-dependent morphological investigations. Coupling phenotypic observations with multi-locus sequencing of fungi isolated in culture enabled these taxonomic discoveries. Outdoor situated timber provides a great potential for culturable undescribed fungal taxa, including higher rank lineages as revealed by this study, and therefore, should be further explored.

3.
Mol Phylogenet Evol ; 17(1): 37-47, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11020303

ABSTRACT

Species of Suillus produce fleshy, pored mushrooms. They are important symbiotic (ectomycorrhizal) partners of many coniferous trees. The genus includes several putative eastern Asian and eastern North American disjunct species, i.e., the S. americanus-S. sibiricus and S. decipiens-S. spraguei complexes. Phylogenetic relationships among the groups were determined to further understand the biogeographic pattern. Analyses were based on 40 sequences of the ITS region of the nuclear ribosomal RNA tandem repeats, representing 18 distinct species/populations. Our phylogenetic analyses suggested that: (1) Chinese and United States' (U.S.) S. spraguei plus S. decipiens form a strongly supported monophyletic group, with North American S. decipiens and Chinese S. spraguei being sister taxa; (2) S. americanus, Asian and U.S. S. sibiricus, plus S. umbonatus form a clade supported by a high bootstrap value; and (3) little ITS sequence divergence exists within the latter group compared to the S. decipiens-S. spraguei clade. Phylogenetic patterns revealed by this study imply a close phylogenetic relationship between eastern Asian and eastern North American disjunct population/species of Suillus. These fungi display relatively high host fidelity (at least to the host subgenus level), suggesting potential coevolutionary/comigratory trends.


Subject(s)
Agaricales/classification , Agaricales/genetics , Cell Nucleus/metabolism , RNA, Ribosomal/genetics , Asia , DNA, Ribosomal Spacer , Evolution, Molecular , Likelihood Functions , North America , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
4.
Syst Biol ; 49(2): 278-305, 2000 Jun.
Article in English | MEDLINE | ID: mdl-12118409

ABSTRACT

Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.


Subject(s)
Agaricales/classification , Agaricales/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Phylogeny , Base Sequence , Biological Evolution , Classification/methods , Genetic Variation
5.
Syst Biol ; 46(3): 373-406, 1997 Sep.
Article in English | MEDLINE | ID: mdl-11975328

ABSTRACT

As an initial step toward developing a model system to study requirements for and consequences of transitions to mutualism, the phylogeny of a group of closely related lichenized and nonlichenized basidiomycetes (Omphalina) was reconstructed. The phylogenetic analyses are based on four data sets representing different regions of the nuclear ribosomal repeat unit (ITS1, 5.8S, ITS2, and 25S) obtained from 30 species of Omphalina and related genera. The resulting phylogenetic trees from each of these four data sets, when analyzed separately, were not identical. Testing for the combinability of these four data sets suggested that they could not be combined in their entirety. The removal of ambiguous alignments and saturated sites was sufficient, after reapplying the combinability test on the pruned data sets, to explain the topological discrepancies. In this process, the first of two complementary tests developed by Rodrigo et al. (1993, N.Z. J. Bot. 31:257-268) to assess whether two data sets are the result of the same phylogenetic history was found to be biased, rejecting the combinability of two data sets even when they are samples of the same phylogenetic history. Combining the four pruned data sets yielded phylogenies that suggest the five lichen-forming species of Omphalina form a monophyletic group. The sister group to this symbiotic clade consists mostly of dark brown Omphalina species intermixed with species from the genera Arrhenia and Phaeothellus. The genera Omphalina and Gerronema are shown to be polyphyletic. The lichen-forming species O. ericetorum and the nonmutualistic species O. velutipes, O. epichysium, and O. sphagnicola are the best candidates for experimental work designed to gain a better understanding of mechanisms involved in symbiotic interactions and the role symbiosis has played in the evolution of fungi.


Subject(s)
Agaricales/genetics , Lichens/genetics , Agaricales/classification , Base Sequence , DNA, Fungal/genetics , Lichens/classification , Molecular Sequence Data , Phylogeny , Sequence Homology, Nucleic Acid , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...