Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(10): e2306724, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145334

ABSTRACT

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge is systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further strengthened with enhanced reasoning ability, as well as with Retrieval-Augmented Generation (RAG) to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model shows impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.


Subject(s)
Artificial Intelligence , Biomimetic Materials , Biomimetic Materials/chemistry , Engineering , Language
2.
Chem Mater ; 35(19): 7878-7903, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37840775

ABSTRACT

Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.

3.
Acta Biomater ; 166: 430-446, 2023 08.
Article in English | MEDLINE | ID: mdl-37121367

ABSTRACT

The jackfruit is the largest fruit on the Earth, reaching upwards of 35 kg and falling from heights of 25 m. To survive such high energy impacts, it has evolved a unique layered configuration with a thorny exterior and porous tubular underlayer. During compression, these layers exhibit a progressive collapse mechanism where the tubules are first to deform, followed by the thorny exterior, and finally the mesocarp layer in between. The thorns are composed of lignified bundles which run longitudinally from the base of the thorn to the tip and are embedded in softer parenchymal cells, forming a fiber reinforced composite. The mesocarp contains more lignin than any of the other layers while the core appears to contain more pectin giving rise to variations in compressive and viscoelastic properties between the layers. The surface thorns provide a compelling impact-resistant feature for bioinspiration, with a cellular structure that can withstand large deformation without failing and wavy surface features which densify during compression without fracturing. Even the conical shape of the thorns is valuable, presenting a gradually increasing surface area during axial collapse. A simplified model of this mechanism is put forward to describe the force response of these features. The thorns also distribute damage laterally during impact and deflect cracks along their interstitial valleys. These phenomena were observed in 3D printed, jackfruit-inspired designs which performed markedly better than control prints with the same mass. STATEMENT OF SIGNIFICANCE: Many biological materials have evolved remarkable structures that enhance their mechanical performance and serve as sources of inspiration for engineers. Plants are often overlooked in this regard yet certain botanical components, like nuts and fruit, have shown incredible potential as blueprints for improved impact resistant designs. The jackfruit is the largest fruit on Earth and generates significant falling impact energies. Here, we explore the jackfruit's structure and its mechanical capabilities for the first time. The progressive failure imparted by its multilayered design and the unique collapse mode of the surface thorns are identified as key mechanisms for improving the fruit's impact resistance. 3D printing is used to show that these structure-property benefits can be successfully transferred to engineering materials.


Subject(s)
Fruit , Mechanical Phenomena
4.
Acta Biomater ; 151: 426-445, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35995409

ABSTRACT

The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique hierarchical structure which contains tubular, lamellar, and gradient configurations. In this study, structural characterization of the hoof wall was performed revealing features previously unknown. Prominent among them are tubule bridges, which are imaged and quantified. The hydration-dependent viscoelasticity of the hoof wall is described by a simplified Maxwell-Weichert model with two characteristic relaxation times corresponding to nanoscale and mesoscale features. Creep and relaxation tests reveal that the specific hydration gradient in the hoof keratin likely leads to reduced internal stresses that arise from spatial stiffness variations. To better understand realistic impact modes for the hoof wall in-vivo, drop tower tests were executed on hoof wall samples. Fractography revealed that the hoof wall's reinforced tubular structure dominates at lower impact energies, while the intertubular lamellae are dominant at higher impact energies. Broken fibers were observed on the surface of the tubules after failure, suggesting that the physically intertwined nature of the tubule reinforcement and intertubular matrix improves the toughness of this natural fiber reinforced composite. The augmented understanding of the structure-mechanical property relationship in dynamic loading led to the design of additively manufactured bioinspired structures, which were evaluated in quasistatic and dynamic loadings. The inclusion of gradient structures and lamellae significantly reduced the damage sustained in drop tower tests, while tubules increased the energy absorption of samples tested in compact tension. The samples most similar to the hoof wall displayed remarkably consistent fracture control properties. STATEMENT OF SIGNIFICANCE: The horse hoof wall, capable of withstanding large, repeated, dynamic loads, has been touted as a candidate for impact-resistant bioinspiration. However, our understanding of this biological material and its translation into engineered designs is incomplete. In this work, new features of the horse hoof wall are quantified and the hierarchical failure mechanisms of this remarkable material under near-natural loading conditions are uncovered. A model of the hoof wall's viscoelastic response, based on studies of other keratinous materials, was developed. The role of hydration, strain rate, and impact energy on the material's response were elucidated. Finally, multi-material 3D printed designs based on the hoof's meso/microstructure were fabricated and exhibited advantageous energy absorption and fracture control relative to control samples.


Subject(s)
Fractures, Bone , Hoof and Claw , Animals , Extremities , Horses , Keratins/chemistry
5.
Vaccines (Basel) ; 4(2)2016 May 04.
Article in English | MEDLINE | ID: mdl-27153098

ABSTRACT

Endosomal Toll-like receptors (TLR) such as TLR3, 7, 8 and 9 recognize pathogen associated nucleic acids. While DNA sequence does influence degree of binding to and activation of TLR9, it also appears to influence the ability of the ligand to reach the intracellular endosomal compartment. The KLK (KLKL5KLK) antimicrobial peptide, which is immunostimulatory itself, can translocate into cells without cell membrane permeabilization and thus can be used for endosomal delivery of TLR agonists, as has been shown with the IC31 formulation that contains an oligodeoxynucleotide (ODN) TLR9 agonist. We evaluated the adjuvant activity of KLK combined with CpG or non-CpG (GpC) ODN synthesized with nuclease resistant phosphorothioate (S) or native phosphodiester (O) backbones with ovalbumin (OVA) antigen in mice. As single adjuvants, CpG(S) gave the strongest enhancement of OVA-specific immunity and the addition of KLK provided no benefit and was actually detrimental for some readouts. In contrast, KLK enhanced the adjuvant effects of CpG(O) and to a lesser extent of GpC (S), which on their own had little or no activity. Indeed while CD8 T cells, IFN-γ secretion and humoral response to vaccine antigen were enhanced when CpG(O) was combined with KLK, only IFN-γ secretion was enhanced when GpC (S) was combined to KLK. The synergistic adjuvant effects with KLK/ODN combinations were TLR9-mediated since they did not occur in TLR9 knock-out mice. We hypothesize that a nuclease resistant ODN with CpG motifs has its own mechanism for entering cells to reach the endosome. For ODN without CpG motifs, KLK appears to provide an alternate mechanism for accessing the endosome, where it can activate TLR9, albeit with lower potency than a CpG ODN. For nuclease sensitive (O) backbone ODN, KLK may also provide protection from nucleases in the tissues.

6.
Nucleic Acid Ther ; 21(3): 201-14, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21749297

ABSTRACT

Microbial infections trigger a multiplicity of responses in the host via innate immune sensors, including the Toll-like receptors (TLRs). TLR7 and TLR8, located in endosomes, detect pathogen-derived RNA, which can be mimicked by synthetic single-stranded oligoribonucleotides (ORNs). Detailed analysis of the immunostimulatory properties of numerous silencing RNAs (siRNAs) revealed that almost all tested siRNAs with a phosphodiester backbone actively stimulated cytokine production in human peripheral blood immune cells, but not all of them did contain previously described guanosine/uridine TLR7 or adenosine/uridine TLR8 motifs. By analysis of sequence variants of these siRNAs (as single- or double-strands), we were able to identify a new immunostimulatory, non-uridine-rich TLR7 motif that is present in many published siRNAs. Interestingly, the activity of this motif is dependent on the backbone chemistry. Phosphorothioate ORNs containing the motif did not stimulate immune activation, whereas phosphodiester ORNs of the same sequence induced a strong TLR7-biased immune response with high amounts of interferon-alpha. Using TLR7- and Myd88-deficient mice, we demonstrated that stimulation by ORNs containing this motif was TLR7 dependent. Our findings are of therapeutic relevance as this motif is present in many siRNA sequences and will to contribute to the immunostimulatory properties of unmodified siRNAs.


Subject(s)
Cytokines/metabolism , Gene Silencing , Immunization/methods , Oligoribonucleotides/chemical synthesis , RNA, Small Interfering/genetics , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 7/metabolism , Amino Acid Motifs , Animals , Blood Buffy Coat , Cytokines/genetics , Humans , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Oligoribonucleotides/genetics , Phosphorothioate Oligonucleotides/chemistry , RNA, Small Interfering/metabolism , Uridine/chemistry
7.
Cancer Immunol Immunother ; 58(4): 615-28, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18802696

ABSTRACT

The anti-tumor properties of Toll-like receptor (TLR) 9 agonist CpG oligodeoxynucleotides (ODN) are enhanced by combinations with several cytotoxic chemotherapy regimens. The mechanisms of this added benefit, however, remain unclear. We now report that, similar to the depletion of regulatory T cells (Treg) using anti-CD25, paclitaxel increased the anti-tumor effect of the TLR9 agonist PF-3512676 in a CD8(+) T cell-dependent fashion. Paclitaxel treatment decreased Treg numbers in a TLR4-independent fashion, and preferentially affected cycling Treg expressing high levels of FoxP3. The paclitaxel-induced reduction in Treg FoxP3 expression was associated with reduced inhibitory function. Adoptively transferred tumor-antigen specific CD8(+) T cells proliferated better in mice treated with paclitaxel and their recruitment in the tumor was increased. However, the systemic frequency of PF-3512676-induced tumor-antigen specific effector CD8(+) T cells decreased with paclitaxel, suggesting opposite effects of paclitaxel on the anti-tumor response. Finally, gene expression profiling and studies of tumor-associated immune cells revealed a complex modulation of the PF-3512676-induced immune response by paclitaxel, including a decrease of IL-10 expression and an increase in IL-17-secreting CD4(+) T cells. Collectively, these data suggest that paclitaxel combined with PF-3512676 may not only promote a better anti-tumor CD8(+) response though increased recruitment in the tumor, possibly through Treg depletion and suppression, but also exerts more complex immune modulatory effects.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Oligodeoxyribonucleotides/administration & dosage , Paclitaxel/administration & dosage , T-Lymphocytes, Regulatory/drug effects , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry , Gene Expression/drug effects , Mice , Neoplasms/immunology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptor 9/agonists
8.
J Infect Dis ; 195(4): 585-8, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17230419

ABSTRACT

C1 esterase inhibitor (C1inh) is a major inhibitor of several pathways of inflammation in humans. In this study, we show that virulent-phase cultures of Bordetella pertussis, the etiological agent for whooping cough, but not other Bordetella species specifically recruit C1inh from human serum. Using a spontaneous mutant of B. pertussis that was deficient in C1inh binding, we demonstrate that the ability of B. pertussis to acquire high levels of human C1inh and wild-type levels of serum resistance are well correlated, suggesting that, in addition to and independent of BrkA expression, acquisition of C1inh is vital to B. pertussis resistance to complement-mediated killing.


Subject(s)
Bordetella pertussis/immunology , Bordetella pertussis/pathogenicity , Complement C1 Inactivator Proteins/metabolism , Complement System Proteins/immunology , Bordetella pertussis/genetics , Bordetella pertussis/metabolism , Humans , Mutation , Protein Binding , Virulence
9.
J Immunol ; 177(3): 1516-25, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16849458

ABSTRACT

Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Chronic Disease , Epitopes, T-Lymphocyte/immunology , Female , Immunologic Memory , Immunophenotyping , Listeria monocytogenes/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ovalbumin/biosynthesis , Ovalbumin/genetics , Ovalbumin/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Time Factors , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...