Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(2): 254, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36592254

ABSTRACT

This study used red mud modified with chitosan (RM/CS) as a novel adsorbent to remove Ni(II) ions from an aqueous solution. The adsorbent was characterized by the techniques of the BET method, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. According to the findings, the surface area of RM/CS is nearly doubled compared to CS, from 68.6 to 105.7 m2.g-1. The Ni(II) batch adsorption of RM/CS was performed as a function of pH value, contact time, and volume of adsorbent. Three isotherm adsorption models (Langmuir, Freundlich, and Sips) and three kinetic models (the pseudo-first-order, the pseudo-second-order, and the intra-diffusion models) were fitted with the experimental data to calculate the maximum adsorption capacity and to estimate the uptake in nature. The Langmuir monolayer adsorption capacity for Nickel (II) is 31.66 mg.g-1 at a pH of 6.0, with an adsorption time of 180 min and a temperature of 323 K. The Ni(II) adsorption on RM/CS is the exothermic process and is controlled by the intra-diffusion model.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Environmental Monitoring , Nickel/chemistry , Temperature , Ions , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Thermodynamics
2.
Chemosphere ; 286(Pt 3): 131766, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416581

ABSTRACT

This work studies the Pb(II) removal onto bentonite clay modified by hexadecyl trimethyl ammonium bromide (HDTMA). Characterizations of the unmodified and modified materials were performed by using XRD, SEM, TG-DSC, FT-IR, and BET surface area analyses. Factors influencing the uptake of Pb(II) from aqueous solution, such as pHsolution, ion strength, uptake time, adsorbent dosage, and initial Pb(II) concentration, were examined. The obtained results showed that bentonite clay was successfully modified by HDTMA, resulting in an increase in its surface area by about 70 %. The Pb(II) adsorption onto modified bentonite clay reached equilibrium at pH = 5.0 after 120 min. Studies within the isotherm and kinetic models demonstrated that the adsorption followed the Sips isotherm and pseudo-second-order kinetic models. The maximum monolayer adsorption capacity calculated from the Langmuir model at 30 °C was 25.8 mg/g, which is much higher than that obtained for the unmodified sample (18.9 mg/g). The FT-IR and TG-DSC analyses indicated that the formation of inner-sphere complexes plays a fundamental role in the mechanism of Pb(II) uptake onto HDTMA-bentonite clay. This mechanism of Pb(II) adsorption was further investigated, for the first time, by using the positron annihilation lifetime (PAL) and electron momentum (EMD) measurements. The PAL and EMD analyses indicated that the existence of Al and Si mono-vacancies in the HDTMA-bentonite should have essential contributions to the adsorption mechanism. In particular, we found a very interesting mechanism that the Pb(II) adsorption should occur inside the interlayer spaces of the HDTMA-bentonite.


Subject(s)
Bentonite , Water Pollutants, Chemical , Clay , Lead , Spectroscopy, Fourier Transform Infrared
3.
Chemosphere ; 287(Pt 3): 132279, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34563768

ABSTRACT

Red mud modified by chitosan (RM/CS) was utilized as an adsorbent to effectively remove Pb(II) from aqueous solution. The surface area of RM/CS was found to significantly increase by more than 50% compared to that of original red mud. Different factors that affected the Pb(II) removal on this material, such as initial Pb(II) concentration, pH, and contact time, were investigated. The pseudo-first-order, pseudo-second-order, and intra-diffusion models were used to fit the experimental data to investigate the Pb(II)'s removal kinetics. The Pb(II) removal followed the intra-diffusion model. Additionally, the non-zero C value obtained from this model indicates that the removal was controlled by many different mechanisms. We also found that the interaction of Pb(II) and carbonate group on the material's surface played a primary role once the adsorption equilibrium was reached. Finally, the maximum adsorptive capacity was found to be about 209 mg/g. This obtained value is higher than those obtained for some other materials. Therefore, the present RM/CS should be a potential material for removing Pb(II) from aqueous solution.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead
4.
J Anal Methods Chem ; 2021: 6613154, 2021.
Article in English | MEDLINE | ID: mdl-33708452

ABSTRACT

The present paper reports the fabrication of inverse opal photonic crystals (IOPCs) by using SiO2 spherical particles with a diameter of 300 nm as an opal photonic crystal template and poly(ethylene glycol) diacrylate (PEGDA) as an inverse opal material. Characteristics and fluorescence properties of the fabricated IOPCs were investigated by using the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), reflection spectroscopy, and fluorescence microscopy. The results clearly showed that the IOPCs were formed comprising of air spheres with a diameter of ∼270 nm. The decrease in size led to a decrease in the average refractive indexes from 1.40 to 1.12, and a remarkable stopband blue shift for the IOPCs was thus achieved. In addition, the obtained results also showed a fluorescence enhancement over 7.7-fold for the Fluor® 488 dye infiltrated onto the IOPCs sample in comparison with onto the control sample.

5.
Environ Sci Pollut Res Int ; 28(45): 63504-63515, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32720021

ABSTRACT

The present work investigates the primary adsorption mechanisms of lead (II) and cadmium (II) cations onto pomelo fruit peel (PFP) from aqueous solution. pH, adsorption time, ion strength, and initial metal cation concentrations, which are factors affecting the uptake of these cations, are investigated. Results show that pH and ion strengths strongly affect the removal of these cations from aqueous solution. Different isotherm adsorption models, such as Langmuir, Freundlich, and Sips, are utilized to fit the experimental data in order to determine the adsorption in nature. The Langmuir monolayer adsorption capacities are found to be 47.18 mg/g for lead (II) and 13.35 mg/g for cadmium (II). Kinetic and thermodynamic studies based on a combination of FT-IR and TG-DSC spectroscopies demonstrate that electrostatic attraction plays a primary adsorption mechanism of lead (II) and cadmium (II) cations onto pomelo fruit peel.


Subject(s)
Citrus , Water Pollutants, Chemical , Adsorption , Cadmium , Cations , Fruit , Hydrogen-Ion Concentration , Kinetics , Lead , Spectroscopy, Fourier Transform Infrared
6.
Chemosphere ; 257: 127147, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32473410

ABSTRACT

In this report, the adsorption of Cr(VI) onto MnO2/CS nanocomposite material from aqueous solution is investigated. All the factors, which affect the adsorption, such as pH, adsorption time, Cr(VI) initial concentration and adsorbent dosage, are also examined. The results obtained show that the Cr(VI) uptake is strongly affected by pH and ion strength. Analysis within the nonlinear isotherm models indicates that the Sips isotherm combining with the Langmuir and Freundlich models offer the best fit to the experimental data due to the obtained highest R2 and smallest RMSE and χ2 values. The calculated Langmuir monolayer adsorption capacity is 61.56 mg g-1 at pH of 2.0 and adsorption time of 120 min. Moreover, the mechanism studies by combining theoretical models with analytical spectroscopies reveal that the electrostatic attraction plays the important role to the uptake of Cr(VI) onto MnO2/CS nanocomposite. Therefore, the present nanocomposite material can be applied to remove total Cr from wastewater produced by the galvanized manufacturing factory with a relatively high efficiency.


Subject(s)
Chromium/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Chitosan , Hydrogen-Ion Concentration , Kinetics , Manganese Compounds , Nanocomposites , Oxides/analysis , Wastewater/analysis , Water/analysis
7.
Lab Chip ; 17(2): 293-303, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27934975

ABSTRACT

In this paper, we propose a simple method to embed transparent reactive materials in a microfluidic cell, and to observe in situ the dissolution of the material. As an example, we show how to obtain the dissolution rate of a calcite window of optical quality, dissolved in water and hydrochloric acid (HCl). These fluids circulate at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the calcite window and a non-reactive support. While the calcite window reacts in contact with the acid, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 µm and a vertical resolution of 50 nm. In order to avoid inlet influence on the reaction, a thin layer of photoresist is added on the calcite surface at the inlet and outlet. This layer is also used as a non reactive reference surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...