Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
Trends Pharmacol Sci ; 45(4): 319-334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471991

ABSTRACT

Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.


Subject(s)
Fatty Liver , Liver , Humans , Liver/metabolism , Fatty Liver/metabolism , Lipid Metabolism
3.
Cell Rep Med ; 5(1): 101352, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232700

ABSTRACT

Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32ß protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.


Subject(s)
Fatty Liver , Liver Diseases , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Triglycerides/metabolism , Down-Regulation/genetics , Interleukins/genetics , Organoids
4.
Clin Gastroenterol Hepatol ; 22(1): 81-90.e4, 2024 01.
Article in English | MEDLINE | ID: mdl-37406954

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD)-related fibrosis is heritable, but it is unclear how family history may be used to identify first-degree relatives with advanced fibrosis. We aimed to develop and validate a simple risk score to identify first-degree relatives of probands who have undergone assessment of liver fibrosis who are at higher risk of NAFLD with advanced fibrosis. METHODS: This prospective, cross-sectional, familial study consisted of a derivation cohort from San Diego, California, and a validation cohort from Helsinki, Finland. This study included consecutive adult probands (n = 242) with NAFLD and advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 of their first-degree relatives. All included probands and first-degree relatives underwent evaluation of liver fibrosis, the majority by magnetic resonance elastography. RESULTS: A total of 396 first-degree relatives (64% male) were included. The median age and body mass index were 47 years (interquartile range, 32-62 y) and 27.6 kg/m2 (interquartile range, 24.1-32.5 kg/m2), respectively. Age (1 point), type 2 diabetes (1 point), obesity (2 points), and proband with NAFLD and advanced fibrosis (2 points) were predictors of advanced fibrosis among first-degree relatives in the derivation cohort (n = 220) and formed the NAFLD Familial Risk Score. The area under the receiver operator characteristic curve of the NAFLD Familial Risk Score for detecting advanced fibrosis was 0.94 in the validation cohort (n = 176). The NAFLD Familial Risk Score outperformed the Fibrosis-4 index in the validation cohort (area under the receiver operator characteristic curve, 0.94 vs 0.70; P = .02). CONCLUSIONS: The NAFLD Familial Risk Score is a simple and accurate clinical tool to identify advanced fibrosis in first-degree relatives. These data may have implications for surveillance in NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Adult , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Cross-Sectional Studies , Prospective Studies , Risk Factors , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Genetic Predisposition to Disease , Liver/pathology , Biopsy
5.
Hepatology ; 80(1): 163-172, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38112489

ABSTRACT

BACKGROUND AND AIMS: A need exists for effective and practical tools to identify individuals at increased risk of liver-related outcomes (LROs) within the general population. APPROACH AND RESULTS: We externally validated the chronic liver disease (CLivD) score for LROs in the UK Biobank cohort. We also investigated the sequential combined use of CLivD and fibrosis-4 (FIB-4) scores. Our analysis included 369,832 adults without baseline liver disease and with available data for CLivD and FIB-4 computation. LROs reflecting compensated or decompensated liver cirrhosis or HCC were ascertained through linkages with electronic health care registries. Discriminatory performance and cumulative incidence were evaluated with competing-risk methodologies. Over a 10-year follow-up, time-dependent AUC values for LRO prediction were 0.80 for CLivD lab (including gamma-glutamyltransferase), 0.72 for CLivD non-lab (excluding laboratory values), and 0.75 for FIB-4. CLivD lab demonstrated AUC values exceeding 0.85 for liver-related death and severe alcohol-associated liver outcomes. The predictive performance of FIB-4 increased with rising CLivD scores; 10-year FIB-4 AUC values ranged from 0.60 within the minimal-risk CLivD subgroup to 0.81 within the high-risk CLivD subgroup. Moreover, in the minimal-risk CLivD subgroup, the cumulative incidence of LRO varied from 0.05% to 0.3% across low-to-high FIB-4 strata. In contrast, within the high-risk CLivD subgroup, the corresponding incidence ranged from 1.7% to 21.1% (up to 33% in individuals with FIB-4 >3.25). CONCLUSIONS: The CLivD score is a valid tool for LRO risk assessment and improves the predictive performance of FIB-4. The combined use of CLivD and FIB-4 identified a subgroup where 1 in 3 individuals developed LROs within 10 years.


Subject(s)
Liver Cirrhosis , Humans , Female , Male , Middle Aged , Aged , Adult , Risk Assessment/methods , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , United Kingdom/epidemiology , Liver Neoplasms/epidemiology , Liver Neoplasms/diagnosis , Severity of Illness Index , Predictive Value of Tests , Cohort Studies , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/diagnosis
6.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127985

ABSTRACT

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Subject(s)
Fatty Liver , Lipodystrophy , Overnutrition , Male , Rats , Animals , Acyltransferases/metabolism , Glycerol , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Rats, Sprague-Dawley , Lipodystrophy/genetics , Adipose Tissue, White/metabolism , Phosphatidic Acids , Inflammation , Phosphates
7.
Cell Metab ; 35(11): 1887-1896.e5, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37909034

ABSTRACT

The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma ß-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma ß-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Humans , Lipogenesis/genetics , 3-Hydroxybutyric Acid/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Mitochondria/metabolism , Genetic Predisposition to Disease
8.
Sci Transl Med ; 15(715): eade3157, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37756381

ABSTRACT

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , NF-kappa B/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Liver/metabolism , Hepatocytes/metabolism , Fibrosis , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL
9.
Liver Int ; 43(5): 1035-1045, 2023 05.
Article in English | MEDLINE | ID: mdl-36843445

ABSTRACT

BACKGROUND & AIMS: Genetic variants, abdominal obesity and alcohol use are risk factors for incident liver disease (ILD). We aimed to study whether variants either alone or when aggregated into genetic risk scores (GRSs) associate with ILD, and whether waist-hip ratio (WHR) or alcohol use interacts with this risk. METHODS: Our study included 33 770 persons (mean age 50 years, 47% men) who participated in health-examination surveys (FINRISK 1992-2012 or Health 2000) with data on alcohol use, WHR and 63 genotypes associated with liver disease. Data were linked with national health registers for liver-related outcomes (hospitalizations, malignancies and death). Exclusions were baseline clinical liver disease. Mean follow-up time was 12.2 years. Cox regression analyses between variants and ILD were adjusted for age, sex and BMI. RESULTS: Variants in PNPLA3, IFNL4, TM6SF2, FDFT1, PPP1R3B, SERPINA1 and HSD17B13 were associated with ILD. GRSs calculated from these variants were not associated with WHR or alcohol use, but were exponentially associated with ILD (up to 25-fold higher risk in high versus low score). The risk of ILD in individuals with high GRS and high WHR or alcohol use compared with those with none of these risk factors was increased by up to 90-fold. GRSs provided new prognostic information particularly in individuals with high WHR. CONCLUSIONS: The effect of multiple genetic variants on the risk of ILD is potentiated by abdominal obesity and alcohol use. Simple GRSs may help to identify individuals with adverse lifestyle who are at a particularly high risk of ILD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Obesity, Abdominal , Male , Humans , Middle Aged , Female , Obesity, Abdominal/epidemiology , Obesity, Abdominal/genetics , Risk Factors , Obesity/epidemiology , Obesity/genetics , Non-alcoholic Fatty Liver Disease/genetics , Body Mass Index , Interleukins
10.
Proc Natl Acad Sci U S A ; 120(4): e2217543120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669104

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in Hsd17b13 knockdown in mice by using a state-of-the-art metabolomics approach. We demonstrate that protection against liver fibrosis conferred by the HSD17B13 rs72613567-A variant in humans and by the Hsd17b13 knockdown in mice is associated with decreased pyrimidine catabolism at the level of dihydropyrimidine dehydrogenase. Furthermore, we show that hepatic pyrimidines are depleted in two distinct mouse models of NAFLD and that inhibition of pyrimidine catabolism by gimeracil phenocopies the HSD17B13-induced protection against liver fibrosis. Our data suggest pyrimidine catabolism as a therapeutic target against the development of liver fibrosis in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Liver/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/pathology , Pyrimidines/pharmacology , Pyrimidines/metabolism
11.
Diabetologia ; 66(3): 567-578, 2023 03.
Article in English | MEDLINE | ID: mdl-36456864

ABSTRACT

AIMS/HYPOTHESIS: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS: C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS: We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION: These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.


Subject(s)
Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , Protein Kinase C-theta/metabolism , Protein Kinase C-epsilon/metabolism , Chromatography, Liquid , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry , Insulin/metabolism , Muscle, Skeletal/metabolism , Triglycerides/metabolism , Ceramides/metabolism
12.
Scand J Gastroenterol ; 58(2): 170-177, 2023 02.
Article in English | MEDLINE | ID: mdl-35989617

ABSTRACT

BACKGROUND AND AIMS: The Chronic Liver Disease (CLivD) risk score was recently shown to predict future advanced liver disease in the general population. We here investigated the impact of individual CLivD-score changes over time. METHODS: Participants of both phase 3 (baseline, 1991-1994) and phase 5 (follow-up, 1997-1999) examinations of the Whitehall II study were followed for liver-related outcomes (hospitalization, cancer, death) until December 2019 through linkage with electronic healthcare registers. The CLivD score, its modifiable components (alcohol use, waist-hip ratio [WHR], diabetes, and smoking), and their individual changes were studied. RESULTS: Among 6590 adults (mean age 50 years, 30% women) with a median 21-year follow-up, there were 80 liver outcomes. A rise in the CLivD score between baseline and follow-up examinations significantly increased the risk for liver-related outcomes (adjusted hazard ratio [aHR] 1.62, 95% confidence interval [CI] 1.01-2.60), more so in subjects with baseline intermediate-high CLivD scores (HR 2.4 for a CLivD-change) compared to minimal-low CLivD scores. Adverse changes over time in alcohol use and WHR, and new-onset diabetes also predicted liver outcomes. In contrast to WHR, changes in body weight (kg) showed a U-shaped association with liver outcomes. CONCLUSIONS: A change in the CLivD score over time corresponds to a true change in the risk for liver-related outcomes, suggesting the usefulness of the CLivD score for assessing response to liver-directed lifestyle interventions. Changes in WHR predicted liver outcomes better than changes in body weight or waist circumference, independent of body mass index, supporting the WHR in assessing risk for future liver disease.


Subject(s)
Liver Diseases , Adult , Humans , Female , Middle Aged , Male , Risk Factors , Waist-Hip Ratio , Body Mass Index , Body Weight
13.
J Clin Invest ; 132(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36317632

ABSTRACT

BACKGROUNDA pilot, single-center study showed that first-degree relatives of probands with nonalcoholic fatty liver disease (NAFLD) cirrhosis have a high risk of advanced fibrosis. We aimed to validate these findings using 2 independent cohorts from the US and Europe.METHODSThis prospective study included probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 first-degree relative. A total of 396 first-degree relatives - 220 in a derivation cohort and 176 in a validation cohort - were enrolled in the study, and liver fibrosis was evaluated using magnetic resonance elastography and other noninvasive imaging modalities. The primary outcome was prevalence of advanced fibrosis in first-degree relatives.RESULTSPrevalence of advanced fibrosis in first-degree relatives of probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD was 15.6%, 5.9%, and 1.3%, respectively (P = 0.002), in the derivation cohort, and 14.0%, 2.6%, and 1.3%, respectively (P = 0.004), in the validation cohort. In multivariable-adjusted logistic regression models, age of ≥50 years (adjusted OR [aOR]: 2.63, 95% CI 1.0-6.7), male sex (aOR: 3.79, 95% CI 1.6-9.2), diabetes mellitus (aOR: 3.37, 95% CI 1.3-9), and a first-degree relative with NAFLD with advanced fibrosis (aOR: 11.8, 95% CI 2.5-57) were significant predictors of presence of advanced fibrosis (all P < 0.05).CONCLUSIONFirst-degree relatives of probands with NAFLD with advanced fibrosis have significantly increased risk of advanced fibrosis. Routine screening should be done in the first-degree relatives of patients with advanced fibrosis.FUNDINGSupported by NCATS (5UL1TR001442), NIDDK (U01DK061734, U01DK130190, R01DK106419, R01DK121378, R01DK124318, P30DK120515, K23DK119460), NHLBI (P01HL147835), and NIAAA (U01AA029019); Academy of Finland grant 309263; the Novo Nordisk, EVO, and Sigrid Jusélius Foundations; and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 777377. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the EFPIA.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Prospective Studies , Elasticity Imaging Techniques/adverse effects , Elasticity Imaging Techniques/methods , Liver Cirrhosis/genetics , Fibrosis
14.
Sci Rep ; 12(1): 15581, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114231

ABSTRACT

Arterial hypertension (HTA) is associated with liver disease, but causality remains unclear. We investigated whether genetic predisposition to HTA is associated with liver disease in the population, and if antihypertensive medication modifies this association. Participants of the Finnish health-examination surveys, FINRISK 1992-2012 and Health 2000 (n = 33,770), were linked with national electronic healthcare registers for liver-related outcomes (K70-K77, C22.0) and with the drug reimbursement registry for new initiation of antihypertensive medication during follow-up. Genetic predisposition to HTA was defined by polygenic risk scores (PRSs). During a median 12.9-year follow-up (409,268.9 person-years), 441 liver-related outcomes occurred. In the fully-adjusted Cox-regression models, both measured systolic blood pressure and clinically defined HTA were associated with liver-related outcomes. PRSs for systolic and diastolic blood pressure were significantly associated with liver-related outcomes (HR/SD 1.19, 95% CI 1.01-1.24, and 1.12, 95% CI 1.01-1.25, respectively). In the highest quintile of the systolic blood pressure PRS, new initiation of antihypertensive medication was associated with reduced rates of liver-related outcomes (HR 0.55, 95% CI 0.31-0.97). HTA and a genetic predisposition for HTA are associated with liver-related outcomes in the population. New initiation of antihypertensive medication attenuates this association in persons with high genetic risk for HTA.


Subject(s)
Antihypertensive Agents , Hypertension , Antihypertensive Agents/therapeutic use , Genetic Predisposition to Disease , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/genetics , Liver , Risk Factors
16.
J Hepatol ; 77(2): 302-311, 2022 08.
Article in English | MEDLINE | ID: mdl-35271949

ABSTRACT

BACKGROUND & AIMS: Current screening strategies for chronic liver disease focus on detection of subclinical advanced liver fibrosis but cannot identify those at high future risk of severe liver disease. Our aim was to develop and validate a risk prediction model for incident chronic liver disease in the general population based on widely available factors. METHODS: Multivariable Cox regression analyses were used to develop prediction models for liver-related outcomes with and without laboratory measures (Modellab and Modelnon-lab) in 25,760 individuals aged 40-70 years. Their data were sourced from the Finnish population-based health examination surveys FINRISK 1992-2012 and Health 2000 (derivation cohort). The models were externally validated in the Whitehall II (n = 5,058) and Copenhagen City Heart Study (CCHS) (n = 3,049) cohorts. RESULTS: The absolute rate of incident liver outcomes per 100,000 person-years ranged from 53 to 144. The final prediction model included age, sex, alcohol use (drinks/week), waist-hip ratio, diabetes, and smoking, and Modellab also included gamma-glutamyltransferase values. Internally validated Wolbers' C-statistics were 0.77 for Modellab and 0.75 for Modelnon-lab, while apparent 15-year AUCs were 0.84 (95% CI 0.75-0.93) and 0.82 (95% CI 0.74-0.91). The models identified a small proportion (<2%) of the population with >10% absolute 15-year risk for liver events. Of all liver events, only 10% occurred in participants in the lowest risk category. In the validation cohorts, 15-year AUCs were 0.78 (Modellab) and 0.65 (Modelnon-lab) in the CCHS cohort, and 0.78 (Modelnon-lab) in the Whitehall II cohort. CONCLUSIONS: Based on widely available risk factors, the Chronic Liver Disease (CLivD) score can be used to predict risk of future advanced liver disease in the general population. LAY SUMMARY: Liver disease often progresses silently without symptoms and thus the diagnosis is often delayed until severe complications occur and prognosis becomes poor. In order to identify individuals in the general population who have a high risk of developing severe liver disease in the future, we developed and validated a Chronic Liver Disease (CLivD) risk prediction score, based on age, sex, alcohol use, waist-hip ratio, diabetes, and smoking, with or without measurement of the liver enzyme gamma-glutamyltransferase. The CLivD score can be used as part of health counseling, and for planning further liver investigations and follow-up.


Subject(s)
Liver Cirrhosis , gamma-Glutamyltransferase , Adult , Aged , Cohort Studies , Humans , Middle Aged , Risk Assessment , Risk Factors
17.
Nat Metab ; 4(1): 60-75, 2022 01.
Article in English | MEDLINE | ID: mdl-35102341

ABSTRACT

Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD.


Subject(s)
Disease Susceptibility , Fatty Liver/etiology , Fatty Liver/metabolism , Gene Expression Regulation , Guanine Nucleotide Exchange Factors/genetics , Alleles , Animals , Biomarkers , Cell Line , Fatty Liver/pathology , Gene Expression Profiling , Genetic Variation , Genotype , Guanine Nucleotide Exchange Factors/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Mice , Polymorphism, Single Nucleotide , RNA-Seq , Ribonucleases
18.
J Hepatol ; 76(3): 526-535, 2022 03.
Article in English | MEDLINE | ID: mdl-34710482

ABSTRACT

BACKGROUND & AIMS: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. METHODS: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). RESULTS: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ß-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ß-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. CONCLUSIONS: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. LAY SUMMARY: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.


Subject(s)
Metabolic Diseases/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Adult , Biopsy/methods , Biopsy/statistics & numerical data , Female , Finland/epidemiology , Humans , Liver/pathology , Liver/physiopathology , Male , Metabolic Diseases/complications , Metabolic Diseases/epidemiology , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Risk Factors
19.
J Hepatol ; 76(2): 283-293, 2022 02.
Article in English | MEDLINE | ID: mdl-34627976

ABSTRACT

BACKGROUND & AIMS: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.


Subject(s)
Environmental Exposure/adverse effects , Lipid Metabolism/physiology , Non-alcoholic Fatty Liver Disease/complications , Adult , Amino Acids/analysis , Amino Acids/blood , Animals , Cohort Studies , Disease Models, Animal , Environmental Exposure/statistics & numerical data , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/blood , Female , Humans , Lipid Metabolism/immunology , Male , Mice , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism
20.
J Clin Endocrinol Metab ; 107(5): e2008-e2020, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34971370

ABSTRACT

CONTEXT: Guidelines recommend blood-based fibrosis biomarkers to identify advanced nonalcoholic fatty liver disease (NAFLD), which is particularly prevalent in patients with obesity. OBJECTIVE: To study whether the degree of obesity affects the performance of liver fibrosis biomarkers in NAFLD. DESIGN: Cross-sectional cohort study comparing simple fibrosis scores [Fibrosis-4 Index (FIB-4); NAFLD Fibrosis Score (NFS); aspartate aminotransferase to platelet ratio index; BARD (body mass index, aspartate-to-alanine aminotransferase ratio, diabetes); Hepamet Fibrosis Score (HFS)] and newer scores incorporating neo-epitope biomarkers PRO-C3 (ADAPT, FIBC3) or cytokeratin 18 (MACK-3). SETTING: Tertiary referral center. PATIENTS: We recruited overweight/obese patients from endocrinology (n = 307) and hepatology (n = 71) clinics undergoing a liver biopsy [median body mass index (BMI) 40.3 (interquartile range 36.0-44.7) kg/m2]. Additionally, we studied 859 less obese patients with biopsy-proven NAFLD to derive BMI-adjusted cutoffs for NFS. MAIN OUTCOME MEASURES: Biomarker area under the receiver operating characteristic (AUROC), sensitivity, specificity, and predictive values to identify histological stage ≥F3 fibrosis or nonalcoholic steatohepatitis with ≥F2 fibrosis [fibrotic nonalcoholic steatohepatitis (NASH)]. RESULTS: The scores with an AUROC ≥0.85 to identify ≥F3 fibrosis were ADAPT, FIB-4, FIBC3, and HFS. For fibrotic NASH, the best predictors were MACK-3 and ADAPT. The specificities of NFS, BARD, and FIBC3 deteriorated as a function of BMI. We derived and validated new cutoffs for NFS to rule in/out ≥F3 fibrosis in groups with BMIs <30.0, 30.0 to 39.9, and ≥40.0 kg/m2. This optimized its performance at all levels of BMI. Sequentially combining FIB-4 with ADAPT or FIBC3 increased specificity to diagnose ≥F3 fibrosis. CONCLUSIONS: In obese patients, the best-performing fibrosis biomarkers are ADAPT and the inexpensive FIB-4, which are unaffected by BMI. The widely used NFS loses specificity in obese individuals, which may be corrected with BMI-adjusted cutoffs.


Subject(s)
Non-alcoholic Fatty Liver Disease , Aspartate Aminotransferases , Biomarkers , Biopsy , Cross-Sectional Studies , Fibrosis , Humans , Liver/pathology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...