Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Open Res Eur ; 4: 26, 2024.
Article in English | MEDLINE | ID: mdl-38655249

ABSTRACT

Background: Stone wool is commonly used as a plant substrate in soilless cultivation and discarded after one growing season. Stone wool waste is difficult to recycle, and thus it is typically landfilled. Alkali-activation of stone wool (i.e., milling and mixing with an alkaline solution) has been shown to be a feasible way to upcycle this waste fraction into, for example, construction products. In this study, the aim was to develop recycled plant substrate from stone wool waste from greenhouses via alkali activation. Methods: Waste stone wool from greenhouses was characterized by X-ray fluorescence (XRF) and mixed with sodium silicate solution either directly or after ball milling. The alkali-activation process was combined with the addition of H 2O 2, pre-made foam, or granulation to obtain suitable porous material for the plant substrate application. Preliminary greenhouse cultivation experiments of pea ( Pisum sativum) were conducted with alkali-activated stone wool mixed with peat (a weight ratio of 1:1) and fertility analysis of the mixture were conducted. Results: The results indicated that the most feasible production method was to use ball-milled stone wool and to combine alkali activation with granulation. The obtained granules could reach 2.7 MPa as compressive strength while the other methods resulted in very fragile material. The preliminary greenhouse cultivation experiments revealed that there were significant levels of nutrients (Ca, P, K, and S) and alkalinity leached from the granules which hindered the growth of pea. The high P and S amounts were also confirmed by the XRF results of stone wool. Conclusions: It can be concluded that the developed granules did not function well as a plant substrate for pea but could enable the re-utilization of the nutrients contained in the greenhouse stone wool waste. Moreover, their application to acidic sulfate soils could be feasible as it would utilize the alkalinity of granules.

2.
Materials (Basel) ; 16(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37959544

ABSTRACT

This review provides an overview of methods to extract valuable resources from the ash fractions of sewage sludge, municipal solid waste, and wood biomass combustion. The resources addressed here include critical raw materials, such as phosphorus, base and precious metals, and rare earth elements for which it is increasingly important to tap into secondary sources in addition to the mining of primary raw materials. The extraction technologies prioritized in this review are based on recycled acids or excess renewable energy to achieve an optimum environmental profile for the extracted resources and provide benefits in the form of local industrial symbioses. The extraction methods cover all scarce and valuable chemical elements contained in the ashes above certain concentration limits. Another important part of this review is defining potential applications for the mineral residues remaining after extraction. Therefore, the aim of this review is to combine the knowledge of resource extraction technology from ashes with possible applications of mineral residues in construction and related sectors to fully close material cycle loops.

3.
Water Sci Technol ; 88(4): 1087-1096, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37651339

ABSTRACT

Wastewater aeration is an important unit operation that provides dissolved oxygen for microorganisms in wastewater treatment. In this study, the impact of peracetic acid (PAA) dosing on wastewater aeration was assessed in terms of oxygen transfer, visual observation of bubble size changes, and evolution of dissolved oxygen from PAA (and H2O2) decomposition. Oxygen transfer coefficients improved with PAA concentrations of up to 7 mg/L, which was probably due to the smaller bubbles being formed from the aeration diffuser and evolution of small bubbles from PAA (and H2O2) decomposition. At a PAA concentration higher than 7 mg/L, the accumulation of acetate molecules to the gas-liquid interface of bubbles likely began to counteract the positive impact of bubble size decrease by increasing the mass transfer resistance of oxygen from bubbles to water. Finally, a continuous bench-scale primary effluent aeration experiment demonstrated that at a continuous PAA dosing of 1 mg/L, the air input by a compressor could be decreased by 54%, while keeping the oxygen level constant at approximately 1.5 mg/L. PAA dosing could be combined, for example, with aerated grit removal to enhance the primary effluent aeration together with additional benefits of partial disinfection and odor formation prevention.


Subject(s)
Hydrogen Peroxide , Peracetic Acid , Wastewater , Diffusion , Oxygen
4.
Environ Sci Pollut Res Int ; 30(6): 14139-14154, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36149556

ABSTRACT

Naturally occurring layered double hydroxide mineral, brucite (BRU), was compared with hydromagnesite (HYD) and a commercial Mg-rich mineral adsorbent (trade name AQM PalPower M10) to remove antimony (Sb) from synthetic and real wastewaters. The BRU and HYD samples were calcined prior to the experiments. The adsorbents were characterized using X-ray diffraction, X-ray fluorescence, and Fourier transform infrared spectroscopy. Batch adsorption experiments were performed to evaluate the effect of initial pH, Sb concentration, adsorbent dosage, and contact time on Sb removal from synthetic wastewater, mine effluent, and textile industry wastewater. Several isotherm models were applied to describe the experimental results. The Sips model provided the best correlation for the BRU and M10. As for the HYD, three models (Langmuir, Sips, and Redlich-Peterson) fit well to the experimental results. The results showed that the adsorption process in all cases followed the pseudo-second-order kinetics. Overall, the most efficient adsorbent was the BRU, which demonstrated slightly higher experimental maximum adsorption capacity (27.6 mg g-1) than the HYD (27.0 mg g-1) or M10 (21.3 mg g-1) in the batch experiments. Furthermore, the BRU demonstrated also an efficient performance in the continuous removal of Sb from mine effluent in the column mode. Regeneration of adsorbents was found to be more effective under acidic conditions than under alkaline conditions.


Subject(s)
Wastewater , Water Pollutants, Chemical , Antimony/chemistry , Water Pollutants, Chemical/analysis , Textile Industry , Minerals , Magnesium Hydroxide , Adsorption , Kinetics , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
5.
RSC Adv ; 12(51): 33187-33199, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425209

ABSTRACT

Nitrogen loss from urea fertiliser due to its high solubility characteristics has led to the invention of controlled release urea (CRU). Majority of existing CRU coatings are produced from a non-biodegradable, toxic and expensive synthetic polymers. This study determines the feasibility of fly ash-based geopolymer as a coating material for urea fertilizer. The effects of fly ash particle size (15.2 µm, 12.0 µm, and 8.6 µm) and solid to liquid (S : L) ratio (3 : 1, 2.8 : 1, 2.6 : 1, 2.4 : 1 and 2.2 : 1) on the geopolymer coating, the characterization such as FTIR analysis, XRD analysis, surface area and pore size analysis, setting time analysis, coating thickness, and crushing strength, and the release kinetics of geopolymer coated urea in water and soil were determined. Lower S : L ratio was beneficial in terms of workability, but it had an adverse impact on geopolymer properties where it increased porosity and decreased mechanical strength to an undesirable level for the CRU application. Geopolymer coated urea prepared from the finest fly ash fraction and lowest S : L ratio demonstrated high mechanical strength and slower urea release profile. Complete urea release was obtained in 132 minutes in water and 15 days in soil from geopolymer-coated urea whereas for uncoated urea it took only 20 minutes in water and 3 days in soil. Thus, geopolymer can potentially be used as a coating material for urea fertilizer to replace commonly used expensive and biodegradable polymer-based coatings.

6.
RSC Adv ; 12(40): 25822-25832, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199609

ABSTRACT

Alkali-activated materials (AAMs) have been known as an alternative cementitious binder in construction for more than 120 years. Several buildings utilizing AAMs were realized in Europe in the 1950s-1980s. During the last 30 years, the interest towards AAMs has been reinvigorated due to the potentially lower CO2 footprint in comparison to Portland cement. However, one often-raised issue with AAMs is the lack of long-term studies concerning durability in realistic conditions. In the present study, we examined a roof tile, which was prepared from alkali-activated blast furnace slag mortar and exposed to harsh Northern Scandinavian weather conditions in Turku, Finland, for approximately 30 years. Characterization of this roof tile provides unique and crucial information about the changes occurring during AAM lifetime. The results obtained with a suite of analytical techniques indicate that the roof tile had maintained excellent durability properties with little sign of structural disintegration in real-life living lab conditions, and thus provide in part assurance that AAM-based binders can be safely adopted in harsh climates. The phase assemblage and nanostructural characterization results reported here further elucidate the long-term changes occurring in AAMs and provide reference points for accelerated durability tests and thermodynamic modelling.

7.
Water Res ; 223: 118984, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36027766

ABSTRACT

Peracetic acid (PAA) in combination with transition metals has recently gained increasing attention for organic micropollutant abatement. In this study, aqueous Co(II), Cu(II), and Ag(I) were compared for their capacity to activate PAA. Co(II) outperformed Cu(II) or Ag(I) and the optimum conditions were 0.05 mM of Co(II), 0.4 mM of PAA, and pH 3. However, due to a wider applicability in water treatment, pH 7 (i.e., bicarbonate buffer) was selected for detailed investigations. The abatement of different micropollutant surrogates could be described with a second-order rate equation (observed second-order rate constants, kobs were in the range of 42-132 M-1 s-1). For the para-substituted phenols, there was a correlation between the observed second-order rate constants of the corresponding phenolates and the Hammett constants (R2 = 0.949). In all oxidation experiments, the reaction rate decreased significantly after 1-2 min, which coincided with the depletion of PAA but also with the deactivation of the Co(II) catalyst by oxidation to Co(III) and subsequent precipitation. It was demonstrated that Co(II) immobilized on a geopolymer-foam performed approximately similarly as aqueous Co(II) but without deactivation due to Co(III) precipitation. This provides a potential option for the further development of heterogeneous catalytic Co(II)/PAA advanced oxidation processes utilizing geopolymers as a catalyst support material.


Subject(s)
Peracetic Acid , Water Pollutants, Chemical , Bicarbonates , Hydrogen Peroxide , Oxidation-Reduction , Phenols
8.
Waste Manag ; 131: 323-330, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34218065

ABSTRACT

Despite mineral wool waste is only a small fraction of total construction and demolition waste (CDW) by mass, it requires large transportation and landfilling capacities due to its low bulk density, and its utilization remains low compared to other CDW types. It is essential to understand the physical and chemical properties of this waste fraction in order to utilize it, e.g. as fiber reinforcement in composites or as supplementary cementitious material. Here, we provide a chemical and physical characterization of 15 glass wool and 12 stone wool samples of different ages collected from various locations across Europe. In addition, the chemical compositions of 61 glass and stone wool samples obtained from the literature are presented. Glass wool samples show little variation in their chemical composition, which resembles the composition of typical soda-lime silicate glass. Stone wool presents a composition similar to basaltic glass but with variability between samples in terms of calcium, magnesium, and iron content. Potentially toxic elements, such as Cr, Ba, and Ni, are present in mineral wools, but in low concentrations (<0.2%). Both wool types contain organic resin, which may decompose into smaller molecular fragments and ammonia upon heating or contact with alkaline solution. Mineral wool wastes have relatively similar length and width distributions, despite the age and type of the mineral wool. Overall, both mineral wool waste types have homogenous chemical and physical properties as compared to many other mineral wastes which makes their utilization as a secondary raw material promising.


Subject(s)
Glass , Silicates , Calcium Compounds , Europe , Minerals
9.
Sci Total Environ ; 797: 149140, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34303986

ABSTRACT

Nano/microplastics (NPs/MPs) and organic micropollutants are contaminants exerting serious threats to aquatic ecosystems, which are further aggravated through their interactions. Organic micropollutants can adsorb on the surface of NPs/MPs, enter to the digestive systems of aquatic organisms with NPs/MPs, and desorb from the surface inside the organism. Consequently, the migration behaviour of organic micropollutants is significantly affected increasing their risk to accumulate in the food chain. Therefore, understanding the adsorption interactions between NPs/MPs and organic micropollutants is critical for evaluating the fate and impact of NPs/MPs in the environment. This review article provides an overview about the role of NPs/MPs as (temporary) sinks for organic micropollutants but also as primary sources of organic micropollutants through the leaching of plastic additives. Specifically, the following aspects are discussed: adsorption/desorption mechanisms (e.g., hydrophobic partitioning interaction, surface adsorption by van der Waals forces or hydrogen bonding, and pore filling), influencing environmental factors (e.g., pH, salinity, and dissolved organic matter), leaching of plastic additives from NPs/MPs, and potential ecotoxicological effects arising from the interactions of NPs/MPs and organic micropollutants.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Ecosystem , Plastics , Water Pollutants, Chemical/analysis
10.
PLoS One ; 15(11): e0242462, 2020.
Article in English | MEDLINE | ID: mdl-33186392

ABSTRACT

Concrete production is globally a major water consumer, and in general, drinking-quality water is mixed in the binder. In the present study, simulated sea water and reverse osmosis reject water were used as batching water for one-part (dry-mix) alkali-activated blast furnace slag mortar. Alkali-activated materials are low-CO2 alternative binders gaining world-wide acceptance in construction. However, their production requires approximately similar amount of water as regular Portland cement concrete. The results of the present study revealed that the use of saline water did not hinder strength development, increased setting time, and did not affect workability. The salts incorporated in the binder decreased the total porosity of mortar, but they did not form separate phases detectable with X-ray diffraction or scanning electron microscopy. Leaching tests for monolithic materials revealed only minimal leaching. Furthermore, results for crushed mortars (by a standard two-stage leaching test) were within the limits of non-hazardous waste. Thus, the results indicated that high-salinity waters can be used safely in one-part alkali-activated slag to prepare high-strength mortars. Moreover, alkali-activation technology could be used as a novel stabilization/solidification method for reverse osmosis reject waters, which frequently pose disposal problems.


Subject(s)
Construction Materials/analysis , Materials Science/methods , Seawater/chemistry , Alkalies , Coal Ash , Compressive Strength , Filtration , Industrial Waste , Microscopy, Electron, Scanning/methods , Osmosis , Porosity , Seawater/analysis , Wastewater/chemistry , Water , X-Ray Diffraction/methods
11.
Sci Rep ; 10(1): 7233, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350343

ABSTRACT

In this work, we compared the main characteristics of highly porous geopolymer components for water treatment applications manufactured by 3D printing, direct foaming, or granulation. Furthermore, different approaches to impregnate the materials with Ag or Cu were evaluated to obtain filters with disinfecting or catalytic properties. The results revealed that all of the investigated manufacturing methods enabled the fabrication of components that possessed mesoporosity, suitable mechanical strength, and water permeability, even though their morphologies were completely different. Total porosity and compressive strength values were 28 vol% and 16 MPa for 3D-printed, 70-79 vol% and 1 MPa for direct-foamed, and 27 vol% and 10 MPa for granule samples. Both the filter preparation and the metal impregnation method affected the amount, oxidation state, and stability of Ag and Cu in the filters. However, it was possible to prepare filters with low metal leaching between a pH of 3-7, so that the released Ag and Cu concentrations were within drinking water standards.

12.
ACS Appl Mater Interfaces ; 12(24): 27745-27757, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32453939

ABSTRACT

In this work, a surface cationized inorganic-organic hybrid foam was produced from porous geopolymer (GP) and cellulose nanocrystals (CNCs). GPs were synthesized from alkali-activated metakaolin using H2O2 as a blowing agent and hexadecyltrimethylammonium bromide (CTAB) as a surfactant. These highly porous GPs were combined at pH 7.5 with cationic CNCs that had been synthesized from dissolving pulp through periodate oxidation followed by cationization in a deep eutectic solvent. The GP-CNC hybrid foams were employed as reactive filters in the removal of the anionic dye, methyl orange (MO; 5-10 mg/L, pH 7). The effects of a mild acid wash and thermal treatments on the structure, properties, and adsorption capacity of the GPs with CNCs and MO were investigated. The CNCs aligned as films and filaments on the surfaces of the neutralized GPs and the addition of CNCs improved MO removal by up to 84% compared with the reference sample. In addition, CTAB was found to disrupt the attachment of CNCs on the pores and improve adsorption of MO in the GPs with and without CNCs.

13.
Heliyon ; 6(1): e03228, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32021927

ABSTRACT

Worldwide, tons of lignin is produced annually in pulping plants and it is mainly considered as a waste material. Usually lignin is burned to produce energy for the pulping reactors. The production of value-added materials from renewable materials like lignin, has proved to be challenging. In this study, the effects of addition of three different types of lignin in the production of tannin/furanic foams is investigated. The foams were matured, first at 373 K and finally carbonized at 1073 K and the properties of them including mechanical strength, specific surface area and pore development are investigated before and after thermal treatment. According to the results, higher mechanical strength is obtained if samples are carbonized at 1073K compared to matured ones at 373K. Up to 10 times stronger materials are achieved this way, which makes them promising as insulating or constructive materials. With physical activation, it is possible to obtain specific surface areas and pore volumes close to 1200 m2/g and 0,55 cm3/g respectively. Mainly micropores are developed during the steam activation which makes these foams more suitable and selective to be used as catalyst support materials in the catalytic conversion of small molecules or in adsorption or gas storage application.

14.
Waste Manag ; 102: 371-379, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31731256

ABSTRACT

Peracetic acid (PAA) is an environmentally friendly disinfectant and oxidizer used in several water and wastewater treatment applications. In the present study, PAA was utilized for the conditioning of municipal wastewater sludge before thickening and dewatering. It was shown that PAA can effectively prevent odor formation (i.e., H2S and NH3) and provide hygienization (using E. coli and Salmonella as indicators). Phytotoxicity can be prevented by controlling the amount PAA-conditioned sludge that is mixed in the soil to be fertilized. The required PAA dose for hygienization was relatively high (480 mg 100% PAA perL sludge) but the results indicated that other sludge stabilization processes are not necessarily required. Therefore, the proposed process involving PAA could be feasible in cases where limited land area is available for sludge processing or quick conditioning of sludge is required.


Subject(s)
Peracetic Acid , Wastewater , Disinfection , Escherichia coli , Odorants , Sewage , Waste Disposal, Fluid
15.
Materials (Basel) ; 12(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816872

ABSTRACT

The growth of global construction has contributed to an inevitable increase in the amount of construction and demolition (C&D) waste, and the recycling of C&D waste as aggregates in concrete is receiving increased interest, resulting in less demand for normal aggregates and bringing a potential solution for the landfilling of wastes. Recently, several studies have focused on the use of C&D waste in alkali-activated concrete to move one step closer to sustainable concretes. This paper focuses on the main mechanisms of using C&D waste in the resulting physical, mechanical, and durability properties of alkali-activated concrete in fresh and hardened state properties. The main difficulties observed with recycled aggregates (RA) in concrete, such as high levels of water demand, porous structure, and low mechanical strength, occur in RA alkali-activated concretes. These are associated with the highly porous nature and defects of RA. However, the high calcium concentration of RA affects the binder gel products, accelerates the hardening rate of the concrete, and reduces the flowability of alkali-activated concretes. For this reason, several techniques have been investigated for modifying the water content and workability of the fresh matrix and for treating RA and RA/alkali-activated binder interactions to produce more sustainable alkali-activated concretes.

16.
Environ Res ; 167: 207-222, 2018 11.
Article in English | MEDLINE | ID: mdl-30053677

ABSTRACT

Sulfate (SO42-) is a ubiquitous anion in natural waters. It is not considered toxic, but it may be detrimental to freshwater species at elevated concentrations. Mining activities are one significant source of anthropogenic sulfate into natural waters, mainly due to the exposure of sulfide mineral ores to weathering. There are several strategies for mitigating sulfate release, starting from preventing sulfate formation in the first place and ending at several end-of-pipe treatment options. Currently, the most widely used sulfate-removal process is precipitation as gypsum (CaSO4·2H2O). However, the lowest reachable concentration is theoretically 1500 mg L-1 SO42- due to gypsum's solubility. At the same time, several mines worldwide have significantly more stringent sulfate discharge limits. The purpose of this review is to examine the process options to reach low sulfate levels (< 1500 mg L-1) in mine effluents. Examples of such processes include alternative chemical precipitation methods, membrane technology, biological treatment, ion exchange, and adsorption. In addition, aqueous chemistry and current effluent standards concerning sulfate together with concentrate treatment and sulfur recovery are discussed.


Subject(s)
Mining , Sulfates/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Sulfates/standards , Water Pollutants, Chemical/standards
17.
Environ Technol ; 39(4): 414-423, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28278098

ABSTRACT

Ammonium [Formula: see text] removal from municipal wastewater poses challenges with the commonly used biological processes. Especially at low wastewater temperatures, the process is frequently ineffective and difficult to control. One alternative is to use ion-exchange. In the present study, a novel [Formula: see text] ion-exchanger, metakaolin geopolymer (MK-GP), was prepared, characterised, and tested. Batch experiments with powdered MK-GP indicated that the maximum exchange capacities were 31.79, 28.77, and 17.75 mg/g in synthetic, screened, and pre-sedimented municipal wastewater, respectively, according to the Sips isotherm (R2 ≥ 0.91). Kinetics followed the pseudo-second-order rate equation in all cases (kp2 = 0.04-0.24 g mg-1 min-1, R2 ≥ 0.97) and the equilibrium was reached within 30-90 min. Granulated MK-GP proved to be suitable for a continuous column mode use. Granules were high-strength, porous at the surface and could be regenerated multiple times with NaCl/NaOH. A bench-scale pilot test further confirmed the feasibility of granulated MK-GP in practical conditions at a municipal wastewater treatment plant: consistently <4 mg/L [Formula: see text] could be reached even though wastewater had low temperature (approx. 10°C). The results indicate that powdered or granulated MK-GP might have practical potential for removal and possible recovery of [Formula: see text] from municipal wastewaters. The simple and low-energy preparation method for MK-GP further increases the significance of the results.


Subject(s)
Ammonium Compounds/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Kaolin/chemistry , Polymers/chemistry
18.
J Hazard Mater ; 317: 373-384, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27318734

ABSTRACT

Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.

19.
J Environ Manage ; 166: 579-88, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26598283

ABSTRACT

The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry.


Subject(s)
Metals, Heavy/analysis , Mining , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Antimony/analysis , Antimony/chemistry , Arsenic/analysis , Arsenic/chemistry , Heavy Metal Poisoning , Kinetics , Metals, Heavy/chemistry , Nickel/analysis , Nickel/chemistry , Poisoning , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
20.
Water Res ; 85: 275-85, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26342181

ABSTRACT

The use of organic peracids in wastewater treatment is attracting increasing interest. The common beneficial features of peracids are effective anti-microbial properties, lack of harmful disinfection by-products and high oxidation power. In this study performic (PFA), peracetic (PAA) and perpropionic acids (PPA) were synthesized and compared in laboratory batch experiments for the inactivation of Escherichia coli and enterococci in tertiary wastewater, oxidation of bisphenol-A and for corrosive properties. Disinfection tests revealed PFA to be a more potent disinfectant than PAA or PPA. 1.5 mg L(-1) dose and 2 min of contact time already resulted in 3.0 log E. coli and 1.2 log enterococci reduction. Operational costs of disinfection were estimated to be 0.0114, 0.0261 and 0.0207 €/m(3) for PFA, PAA and PPA, respectively. Disinfection followed the first order kinetics (Hom model or S-model) with all studied peracids. However, in the bisphenol-A oxidation experiments involving Fenton-like conditions (pH = 3.5, Fe(2+) or Cu(2+) = 0.4 mM) peracids brought no additional improvement to traditionally used and lower cost hydrogen peroxide. Corrosion measurements showed peracids to cause only a negligible corrosion rate (<6 µm year(-1)) on stainless steel 316L while corrosion rates on the carbon steel sample were significantly higher (<500 µm year(-1)).


Subject(s)
Benzhydryl Compounds/metabolism , Disinfectants/pharmacology , Disinfection/methods , Enterococcus/drug effects , Escherichia coli/drug effects , Phenols/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Corrosion , Formates/pharmacology , Oxidation-Reduction , Peracetic Acid/pharmacology , Peroxides/pharmacology , Propionates/pharmacology , Steel/chemistry , Wastewater/analysis , Water Purification , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...