Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1083200, 2023.
Article in English | MEDLINE | ID: mdl-36875241

ABSTRACT

Humans are capable to skillfully perform a huge variety of complex movements seemingly effortless and to flexibly adjust movement execution to ever-changing environmental conditions, often without apparent differences in the movement outcome. This impressive ability has sparked scientific interest in the mechanisms underlying movement execution for decades. In this perspective article, we argue that investigating the processes and mechanisms leading to failure of motor functions is a fruitful approach to advance the field of human motor neuroscience and beyond. The study of failure of motor function in specific populations (patient groups, skilled experts) has already provided tremendous insight in the systemic characteristics and multi-level functional dependencies of movement execution. However, particularly the transient failure of function in everyday motor actions remains a blind spot. Coming from the perspective of Developmental Embodiment Research, we argue that the integration of a developmental embodiment and lifespan perspective with existing systemic and multi-level methodological approaches of failure of function analyses provides an integrative, interdisciplinary framework, which will allow us to overcome this shortcoming. We further suggest that stress-induced failure of motor function situations might represent a promising starting point for this endeavor. Identifying the involved cross-level functional dependencies of acute and chronic stress on transient and persistent motor functioning would further advance our knowledge on the mechanisms underlying movement execution, and would allow to identify targets for intervention and prevention across the whole spectrum of motor function and failure.

3.
Front Syst Neurosci ; 15: 672740, 2021.
Article in English | MEDLINE | ID: mdl-34393730

ABSTRACT

Embodiment research is at a turning point. There is an increasing amount of data and studies investigating embodiment phenomena and their role in mental processing and functions from across a wide range of disciplines and theoretical schools within the life sciences. However, the integration of behavioral data with data from different biological levels is challenging for the involved research fields such as movement psychology, social and developmental neuroscience, computational psychosomatics, social and behavioral epigenetics, human-centered robotics, and many more. This highlights the need for an interdisciplinary framework of embodiment research. In addition, there is a growing need for a cross-disciplinary consensus on level-specific criteria of embodiment. We propose that a developmental perspective on embodiment is able to provide a framework for overcoming such pressing issues, providing analytical tools to link timescales and levels of embodiment specific to the function under study, uncovering the underlying developmental processes, clarifying level-specific embodiment criteria, and providing a matrix and platform to bridge disciplinary boundaries among the involved research fields.

4.
PLoS One ; 15(8): e0237001, 2020.
Article in English | MEDLINE | ID: mdl-32790782

ABSTRACT

Why people differ in their susceptibility to external events is essential to our understanding of personality, human development, and mental disorders. Genes explain a substantial portion of these differences. Specifically, genes influencing the serotonin system are hypothesized to be differential susceptibility factors, determining a person's reactivity to both positive and negative environments. We tested whether genetic variation in the serotonin transporter (5-HTTLPR) is a differential susceptibility factor for daily events. Participants (N = 326, 77% female, mean age = 25, range = 17-36) completed smartphone questionnaires four times a day over four to five days, measuring stressors, uplifts, positive and negative affect. Affect was predicted from environment valence in the previous hour on a within-person level using three-level autoregressive linear mixed models. The 5-HTTLPR fulfilled all criteria of a differential susceptibility factor: Positive affect in carriers of the short allele (S) was less reactive to both uplifts and stressors, compared to homozygous carriers of the long allele (L/L). This pattern might reflect relative affective inflexibility in S-allele carriers. Our study provides insight into the serotonin system's general role in susceptibility and highlights the need to assess the whole spectrum of naturalistic experiences.


Subject(s)
Genetic Predisposition to Disease , Life Change Events , Serotonin Plasma Membrane Transport Proteins/genetics , Stress, Psychological/genetics , Adolescent , Adult , Affect , Alleles , Female , Heterozygote , Homozygote , Humans , Male , Mental Disorders/genetics , Middle Aged , Models, Genetic , Models, Psychological , Surveys and Questionnaires , Young Adult
5.
Soc Cogn Affect Neurosci ; 15(3): 293-301, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32227088

ABSTRACT

Social relationships are a crucial determinant of both mental and physical health. This effect is partly due to social buffering of stress. Animal studies suggest that social buffering is mediated via the oxytocin system, while studies in humans are sparse and limited by the low ecological validity of laboratory settings. In the present study, participants (N = 326) completed smartphone questionnaires four times a day over 4 to 5 days, measuring stressors, negative affect, and social context to assess social buffering. We found that under stress, participants reported a higher need for social company. Further, the impact of prior stressful events on momentary negative affect was attenuated by the perceived pleasantness of current social company. This social buffering effect was moderated by haplotypes of the oxytocin receptor gene, based on two well-described single nucleotide polymorphisms (rs2268498, rs53576). Effects were robust when controlling for gender and age, applying different data quality criteria, and even apparent in genotype-based analyses. Our findings demonstrate that social buffering and its modulation by oxytocin system characteristics have implications for life as lived outside the laboratory.


Subject(s)
Receptors, Oxytocin/genetics , Stress, Psychological/genetics , Animals , Female , Humans , Interpersonal Relations , Male , Polymorphism, Single Nucleotide , Social Environment , Surveys and Questionnaires
6.
Curr Genomics ; 19(8): 638-652, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30532644

ABSTRACT

Epigenetic processes during early brain development can function as 'developmental switches' that contribute to the stability of long-term effects of early environmental influences by programming central feedback mechanisms of the HPA axis and other neural networks. In this thematic review, we summarize accumulated evidence for a dual-activation of stress-related and sensory networks underlying the epigenetic programming effects of early life stress. We discuss findings indicating epigenetic programming of stress-related genes with impact on HPA axis function, the interaction of epigenetic mechanisms with neural activity in stress-related neural networks, epigenetic effects of glucocorticoid exposure, and the impact of stress on sensory development. Based on these findings, we propose that the combined activation of stress-related neural networks and stressor-specific sensory networks leads to both neural and hormonal priming of the epigenetic machinery, which sensitizes these networks for developmental programming effects. This allows stressor-specific adaptations later in life, but may also lead to functional mal-adaptations, depending on timing and intensity of the stressor. Finally, we discuss methodological and clinical implications of the dual-activation hypothesis. We emphasize that, in addition to modifications in stress-related networks, we need to account for functional modifications in sensory networks and their epigenetic underpinnings to elucidate the long-term effects of early life stress.

7.
Cereb Cortex ; 27(1): 841-851, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26620265

ABSTRACT

Reactivation of memory can cause instability necessitating the reconsolidation of the trace. This process can be blocked by amnestic treatments administered after memory reactivation resulting in subsequent memory deficits. While the basolateral amygdala (BLA) is known to be crucial for reconsolidation, evidence for a contribution of the hippocampal CA1 region has only started to accumulate. Moreover, the effect of a reconsolidation blockade in CA1 has only been evaluated behaviorally, and it is unknown whether this manipulation has a long-term effect on neuronal activity. We combined optogenetic and high-resolution molecular imaging techniques to inhibit cell firing in CA1 following the reactivation of a fear memory in mice, evaluated memory performance and imaged neuronal activity the next day upon reexposure to the conditioning context. Blocking memory reconsolidation led to severe memory impairments that were associated with reduced neuronal activity not only in CA1 but also in CA3 and the BLA. Thus, our results indicate that CA1 is necessary for reconsolidation and suggest the involvement of a CA3-CA1-BLA network in the retrieval of contextual fear memory. Further investigations of this network might contribute to the validation of new brain targets for the treatment of pathologies such as posttraumatic stress disorders.


Subject(s)
CA1 Region, Hippocampal/physiology , Memory Consolidation/physiology , Mental Recall/physiology , Action Potentials , Animals , Basolateral Nuclear Complex/physiology , CA3 Region, Hippocampal/physiology , Conditioning, Psychological/physiology , Fear/physiology , Male , Mice, Inbred C57BL , Molecular Imaging , Neurons/physiology , Optogenetics
8.
Elife ; 5: e11862, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26880561

ABSTRACT

Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval.


Subject(s)
CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/physiology , Memory , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Animals , Cytoskeletal Proteins/analysis , Mice , Nerve Tissue Proteins/analysis
9.
PLoS One ; 7(11): e48487, 2012.
Article in English | MEDLINE | ID: mdl-23144893

ABSTRACT

A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.


Subject(s)
Caffeine/pharmacology , Cerebrum/drug effects , Cerebrum/physiology , Language , Adult , Arousal/physiology , Behavior , Caffeine/administration & dosage , Female , Humans , Likelihood Functions , Logistic Models , Male , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...