Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Chromatogr B Biomed Sci Appl ; 743(1-2): 317-25, 2000 Jun 23.
Article in English | MEDLINE | ID: mdl-10942302

ABSTRACT

As part of an ongoing research effort on aqueous two-phase systems (ATPSs) with volatile salts, this work describes the partitioning behavior of a series of amino acids, namely L-serine, glycine, L-alanine, L-valine, L-methionine, L-isoleucine, and L-phenylalanine, in these systems. The results show that amino acids partition in a similar way in polymer-volatile salt ATPSs and in traditional polymer-salt ATPSs. Increasing amino acid hydrophobicities lead to increasing partition coefficients. Moreover, the common linear relationship between the logarithm of the partition coefficient and the tie line length is observed here as well. Furthermore, the relation between relative partition coefficients and relative hydrophobicities of amino acids in the extraction systems investigated in this work is comparable to that in other extraction systems.


Subject(s)
Amino Acids/isolation & purification , Salts/chemistry , Volatilization , Water/chemistry
2.
Biotechnol Bioeng ; 70(1): 65-71, 2000 Oct 05.
Article in English | MEDLINE | ID: mdl-10940864

ABSTRACT

Aqueous two-phase systems (ATPSs) have great potential for use in the downstream processing of fermentation products. A major drawback of these systems, limiting application in industrial practice up till now, is the consumption of large amounts of auxiliary materials such as polymers and salts. Making use of alternative auxiliaries can diminish this relatively large discharge. A possible approach is to make use of volatile salts induced by combinations of ammonia and carbon dioxide that can be recycled to the extraction system. As part of an ongoing research effort on ATPSs with volatile salts, this work aims at getting more information on the system boundaries or operating conditions of these systems in terms of phase behavior. The results show that the NH(3)/CO(2) ratio is an important parameter that has a large influence on the system boundaries. Both for systems with PEG 2000 and PEG 4000, this ratio has to be larger than about 1.75 to make a liquid-liquid phase separation possible. The most optimal ratio seems to be 2.0 for reasons of solution composition and absence of solid salt.


Subject(s)
Ammonia/metabolism , Biotechnology/methods , Carbon Dioxide/metabolism , Chemistry Techniques, Analytical , Salts , Water/chemistry , Carbamates/pharmacology , Hydrogen-Ion Concentration , Polyethylene Glycols/analysis , Polyethylene Glycols/isolation & purification , Polymers , Pressure
3.
J Chromatogr B Biomed Sci Appl ; 711(1-2): 61-8, 1998 Jun 26.
Article in English | MEDLINE | ID: mdl-9699975

ABSTRACT

Aqueous two-phase systems (ATPSs) have great potential in the downstream processing of fermentation products. However, the consumption of large amounts of auxiliary materials limits application in industrial practice. Promising alternatives to the salts used so far are volatile salts such as ammonium bicarbonate and ammonium carbamate, which can be recycled to the extraction system as gaseous carbon dioxide and ammonia. In this work, it is demonstrated that ammonium carbamate in combination with poly(ethylene glycol) (PEG, molecular masses of 2000, 4000 and 10000) indeed produces aqueous two-phase systems (ATPSs) at a temperature of 25 degrees C and atmospheric pressure. Ammonium bicarbonate is clearly not suitable as a phase-forming salt, because of its too-low solubility in water.


Subject(s)
Chemistry Techniques, Analytical , Polyethylene Glycols , Salts , Carbamates , Polymers , Volatilization , Water
4.
J Chromatogr B Biomed Sci Appl ; 711(1-2): 223-35, 1998 Jun 26.
Article in English | MEDLINE | ID: mdl-9699991

ABSTRACT

The use of a centrifugal partition chromatographic reactor is investigated for the production of chiral amino acids from racemic mixtures. Chirally selective enzymatic hydrolysis of N-acetyl-L-methionine into acetic acid and L-methionine was carried out in the chromatographic reactor to demonstrate the concept of integrated reaction and separation in centrifugal partition chromatography (CPC). The products L-methionine and acetic acid, as well as the unconverted substrate, N-acetyl-D-methionine are obtained separately. An aqueous two-phase system, consisting of PEG 600, potassium phosphate and water was successfully applied as liquid-liquid two-phase system in CPC. A model is presented, which describes the reaction chromatograms on the basis of the independently measured partition and mass transfer coefficients of the individual (reacting) components. The model appears to be a valuable tool for optimizing the reaction-separation process.


Subject(s)
Amino Acids/isolation & purification , Centrifugation , Chromatography/methods , Hydrolysis , Kinetics , Methionine/analogs & derivatives , Methionine/chemistry
5.
Biotechnol Bioeng ; 57(4): 409-19, 1998 Feb 20.
Article in English | MEDLINE | ID: mdl-10099217

ABSTRACT

The effects of dissolved oxygen tension and mechanical forces on fungal morphology were both studied in the submerged fermentation of Aspergillus awamori. Pellet size, the hairy length of pellets, and the free filamentous mycelial fraction in the total biomass were found to be a function of the mechanical force intensity and to be independent of the dissolved oxygen tension provided that the dissolved oxygen tension was neither too low (5%) nor too high (330%). When the dissolved oxygen concentration was close to the saturation concentration corresponding to pure oxygen gas, A. awamori formed denser pellets and the free filamentous mycelial fraction was almost zero for a power input of about 1 W/kg. In the case of very low dissolved oxygen tension, the pellets were rather weak and fluffy so that they showed a very different appearance. The amount of biomass per pellet surface area appeared to be affected only by the dissolved oxygen tension and was proportional to the average dissolved oxygen tension to the power of 0.33. From this it was concluded that molecular diffusion was the dominant mechanism for oxygen transfer in the pellets and that convection and turbulent flow in the pellets were negligible in submerged fermentations. The biomass per wet pellet volume increased with the dissolved oxygen tension and decreased with the size of the pellets. This means that the smaller pellets formed under a higher dissolved oxygen tension had a higher intrinsic strength. Correspondingly, the porosity of the pellets was a function of the dissolved oxygen tension and the size of pellets. Within the studied range, the void fraction in the pellets was high and always much more than 50%.


Subject(s)
Aspergillus/cytology , Aspergillus/metabolism , Bioreactors , Oxygen/metabolism , Biomechanical Phenomena , Energy Metabolism , Fermentation , Models, Biological , Rheology , Surface Properties , Tensile Strength
6.
Biotechnol Bioeng ; 60(2): 216-29, 1998 Oct 20.
Article in English | MEDLINE | ID: mdl-10099423

ABSTRACT

Generalizing results from fungal fermentations is difficult due to their high sensitivity toward slight variation in starting conditions, poor reproducibility, and difference in strains. In this study a mathematical model is presented in which oxygen transfer, agitation intensity, dissolved oxygen tension, pellet size, formation of mycelia, the fraction of mycelia in the total biomass, carbohydrate source consumption, and biomass growth are taken into account. Two parameters were estimated from simulation, whereas all others are based on measurements or were taken from literature. Experimental data are obtained from the fermentations in both 2 L and 100 L fermentors at various conditions. Comparison of the simulation with experiments shows that the model can fairly well describe the time course of fungal growth (such as biomass and carbohydrate source concentrations) and fungal morphology (such as pellet size and the fraction of pellets in the total biomass). The model predicts that a stronger agitation intensity leads to a smaller pellet size and a lower fraction of pellets in the total biomass. At the same agitation intensity, pellet size is hardly affected by the dissolved oxygen tension, whereas the fraction of mycelia decreases slightly with an increase of the dissolved oxygen tension in the bulk. All of these are in line with observations at the corresponding conditions.


Subject(s)
Fungi/growth & development , Aspergillus/cytology , Aspergillus/growth & development , Aspergillus/metabolism , Biomass , Culture Media , Fermentation , Fungi/cytology , Kinetics , Mathematics , Models, Biological , Oxygen Consumption
7.
Biotechnol Bioeng ; 54(6): 549-66, 1997 Jun 20.
Article in English | MEDLINE | ID: mdl-18636411

ABSTRACT

In the serial gray box modeling strategy, generally available knowledge, represented in the macroscopic balance, is combined naturally with neural networks, which are powerful and convenient tools to model the inaccurately known terms in the macroscopic balance. This article shows, for a typical biochemical conversion, that in the serial gray box modeling strategy the identification data only have to cover the input-output space of the inaccurately known term in the macroscopic balances and that the accurately known terms can be used to achieve reliable extrapolation. The strategy is demonstrated successfully on the modeling of the enzymatic (repeated) batch conversion of penicillin G, for which real-time results are presented. Compared with a more data-driven black box strategy, the serial gray box strategy leads to models with reliable extrapolation properties, so that with the same number of identification experiments the model can be applied to a much wider range of different conditions. Compared to a more knowledge-driven white box strategy, the serial gray box model structure is only based on readily available or easily obtainable knowledge, so that the development time of serial gray box models still may be short in a situation where there is no detailed knowledge of the system available. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 549-566, 1997.

8.
Biotechnol Bioeng ; 54(3): 272-86, 1997 May 05.
Article in English | MEDLINE | ID: mdl-18634093

ABSTRACT

Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h(-1), were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L(-1). Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L(-1), and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L(-1) glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism.

9.
Biotechnol Bioeng ; 55(5): 715-26, 1997 Sep 05.
Article in English | MEDLINE | ID: mdl-18636582

ABSTRACT

Both parallel fermentations with Aspergillus awamori (CBS 115.52) and a literature study on several fungi have been carried out to determine a relation between fungal morphology and agitation intensity. The studied parameters include hyphal length, pellet size, surface structure or so-called hairy length of pellets, and dry mass per-wet-pellet volume at different specific energy dissipation rates. The literature data from different strains, different fermenters, and different cultivation conditions can be summarized to say that the main mean hyphal length is proportional to the specific energy dissipation rate according to a power function with an exponent of -0.25 +/- 0.08. Fermentations with identical inocula showed that pellet size was also a function of the specific energy dissipation rate and proportional to the specific energy dissipation rate to an exponent of -0.16 +/- 0.03. Based on the experimental observations, we propose the following mechanism of pellet damage during submerged cultivation in stirred fermenters. Interaction between mechanical forces and pellets results in the hyphal chip-off from the pellet outer zone instead of the breakup of pellets. By this mechanism, the extension of the hyphae or hair from pellets is restricted so that the size of pellets is related to the specific energy dissipation rate. Hyphae chipped off from pellets contribute free filamentous mycelia and reseed their growth. So the fraction of filamentous mycelial mass in the total biomass is related to the specific energy dissipation rate as well.To describe the surface morphology of pellets, the hyphal length in the outer zone of pellets or the so-called hairy length was measured in this study. A theoretical relation of the hairy length with the specific energy dissipation rate was derived. This relation matched the measured data well. It was found that the porosity of pellets showed an inverse relationship with the specific energy dissipation rate and that the dry biomass per-wet-pellet volume increased with the specific energy dissipation rates. This means that the tensile strength of pellets increased with the increase of specific energy dissipation rate. The assumption of a constant tensile strength, which is often used in literature, is then not valid for the derivation of the relation between pellet size and specific energy dissipation rate. The fraction of free filamentous mycelia in the total biomass appeared to be a function of the specific energy dissipation in stirred bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 715-726, 1997.

10.
Biotechnol Bioeng ; 56(2): 190-200, 1997 Oct 20.
Article in English | MEDLINE | ID: mdl-18636624

ABSTRACT

Quantification of yeast flocculation under defined conditions will help to understand the physical mechanisms of the flocculation process used in beer fermentation. Flocculation was quantified by measuring the size of yeast flocs and the number of single cells. For this purpose, a method to measure floc size and number of single cells in situ was developed. In this way, it was possible to quantify the actual flocculation during fermentation, without influencing flocculation. The effects of three physical parameters, floc strength, fluid shear, and yeast cell concentration, on flocculation during beer fermentation, were examined. Increasing floc strength results in larger flocs and lower numbers of single cells. If the fluid shear is increased, the size of the flocs decreases, and the number of single cells remains constant at approximately 10% of the total cells present. The cell concentration also influences flocculation, a reduction of 50% in cell concentration leads to a decrease of about 25% in floc size. The number of single cells decreases in linear proportion to the cell concentration. This means that, during yeast settling at full scale, the number of single cells decreases. The results of this study are used in a model for yeast flocculation. With respect to full scale fermentation the effect of cell concentration will play an important role, for flocculation and sedimentation will occur simultaneously leading to a quasi steady state between these phenomena. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 190-200, 1997.

11.
Biotechnol Bioeng ; 49(4): 364-76, 1996 Feb 20.
Article in English | MEDLINE | ID: mdl-18623590

ABSTRACT

Bioprocess identification starts with collection of process information. Usually there is a variety of information available, consisting of actual measurement data, historical data, empirical kinetic and yield correlations, and general knowledge available from literature. A central problem is to find out how the various pieces of information should be integrated. In addition, one should know how to deal with missing, inconsistent, or too inaccurate data. Recently, a general systematic method for dealing with these problems, based on conservation constraints, was published, and application shown to simple black box systems. In this article, the scope is generalized by including metabolic network data and dispersed process information of diverse type and nature, such as multiple sources of the value of one particular quantity, use of kinetic expressions, analytical problems, cometabolism or mixed substrate utilization, and chemical reactions. The alkalophilic bacterium Acinetobacter calcoaceticus is used as a model organism, growing on acetate and converting xylose into xylonolactone. It is shown that all relevant pieces of information can be straightforwardly and systematically treated, by considering them as constaints. In general, it is illustrated how the search for directed process improvements starts with an optimal selection of information sources, followed by an accurate analysis of possible metabolic bottlenecks. In this particular case it is shown that the yield of A. calcoaceticus on acetate at varying xylose/acetate feed ratios can be accurately predicted using dispersed process information. (c) 1996 John Wiley & Sons, Inc.

12.
Electrophoresis ; 17(1): 137-43, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8907531

ABSTRACT

Electrode reactions during the electrophoretic process may change the pH of the buffer and subsequently the migration behavior of solutes with resultant loss of reproducibility. A theoretical treatment of pH variations due to electrolytic processes is presented. The choice of buffer appears to have a dramatic influence on the pH variations observed, even if substantial buffer action is expected at the pH chosen. The experimental evaluation of the separation of 4-hydroxy-3-methoxycinnamic acid and 3-hydroxybenzoic acid reveals that the quality of the separation decreases continuously from a baseline separation observed in the first experiment to a comigration of the two solutes (resolution = 0) in the ninth experiment. A pH decrease of about 0.05 pH units accounts for the observed changes in mobility. A novel in situ pH measurement approach is presented, in which the mobility, peak area, and peak height of an indicator dye are related to the pH in the capillary. This enables the identification and quantitation of pH variations during electrophoretic runs: the pH decreases at the anodic side already after the first experiment and pH variations as small as 0.02 pH units can be measured. The variations in peak height appear to be less suited. The calculated pH variations are in close agreement with the ones obtained experimentally.


Subject(s)
Electrolytes , Electrophoresis, Capillary , Buffers , Electrodes , Hydrogen-Ion Concentration , Linear Models , Osmolar Concentration , Oxidation-Reduction , Reproducibility of Results
13.
Biotechnol Bioeng ; 44(7): 781-91, 1994 Sep 20.
Article in English | MEDLINE | ID: mdl-18618845

ABSTRACT

This article presents a method to test the presence of relatively small systematic measurement errors; e.g., those caused by inaccurate calibration or sensor drift. To do this, primary measurements-flow rates and concentrations-are first translated into observed conversions, which should satisfy several constraints, like the laws of conservation of chemical elements. This study considers three objectives: 1.Modification of the commonly used balancing technique to improve error sensitivity to be able to detect small systematic errors. To this end, the balancing technique is applied sequentially in time.2.Extension of the method to enable direct diagnosis of errors in the primary measurements instead of diagnosing errors in the observed conversions. This was achieved by analyzing how individual errors in the primary measurements are expressed in the residual vector.3.Derivation of a new systematic method to quantitatively determine the sensitivity of the error, is that error size at which the expected value of the chisquare test function equals its critical value.The method is applied to industrial data demonstrating the effectiveness of the approach. It was shown that, for most possible error sources, a systematic errors of 2% to 5% could be detected. In given application, the variation of the N-content of biomass was appointed to be the cause of errors. (c) 1994 John Wiley & Sons, Inc.

14.
J Chromatogr A ; 677(1): 192-6, 1994 Aug 12.
Article in English | MEDLINE | ID: mdl-7951980

ABSTRACT

The historically conditioned adaptation of living organisms to chemically corresponding elements is influenced in nature by anthropogenic activities in many regions, the selenium-sulphur pair being one example of such a case. The separation of selenomethionine, selenoethionine and selenocystine was studied by HPLC and high-resolution GC. Ion-exchange chromatography followed by temperature-programmed GC gives the possibility of the analytical separation of trace amounts of selenomethionine in a complex mixture of common amino acids. Diastereoisomers of selenocystine were identified by HPLC in the AccQ-Tag mode.


Subject(s)
Amino Acids, Sulfur/chemistry , Selenium/chemistry , Amino Acids, Sulfur/isolation & purification , Chromatography, Gas , Chromatography, High Pressure Liquid , Stereoisomerism
15.
Biotechnol Bioeng ; 43(1): 3-10, 1994 Jan 05.
Article in English | MEDLINE | ID: mdl-18613305

ABSTRACT

Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.

16.
Biotechnol Bioeng ; 43(1): 11-20, 1994 Jan 05.
Article in English | MEDLINE | ID: mdl-18613306

ABSTRACT

Conservation equations derived from elemental balances, heat balances, and metabolic stoichiometry, can be used to constrain the values of conversion rates of relevant components. In the present work, their use will be discussed for detection and localization of significant errors of the following types: 1.At least one of the primary measurements has a significant error (gross measurement error).2.The system definition is incorrect: a component a.is not included in the system description.b.has a composition different from that specified.3.The specified variances are too small, resulting in a too-sensitive test.The error diagnosis technique presented here, is based on the following: given the conservation equations, for each set of measured rates, a vector of residuals of these equations can be constructed, of which the direction is related to the error source, as its length is a measure of the error size. The similarity of the directions of such a residual vector and certain compare vectors, each corresponding to a specific error source, is considered in a statistical test. If two compare vectors that result from different error sources have (almost) the same direction, errors of these types cannot be distinguished from each other. For each possible error in the primary measurements of flows and concentrations, the compare vector can be constructed a priori, thus allowing analysis beforehand, which errors can be observed. Therefore, the detectability of certain errors likely to occur can be insured by selecting a proper measurement set. The possibility of performing this analysis before experiments are carried out is an important advantage, providing a profound understanding of the detectability of errors. The characteristics of the method with respect to diagnosis of simultaneous errors and error size estimation are discussed and compared to those of the serial elimination method and the serial compensation strategy, published elsewhere. (c) 1994 John Wiley & Sons, Inc.

17.
Biotechnol Bioeng ; 40(9): 1097-106, 1992 Nov.
Article in English | MEDLINE | ID: mdl-18601219

ABSTRACT

To check for possible mass transfer limitations of oxygen and/or carbon dioxide in kinetic experiments on microbial desulphurization of coal, it is important to properly measure the volumetric mass transfer coefficient (k(L)a) especially at high slurry densities. Volumetric mass transfer coefficients of oxygen, at different solid hold-up values (epsilon(s) = 0 to 0.28) of coal slurries (d(par) < 100 * 10(-6) m), were measured in a lab scale fermentor and in a lab scale pachuca tank, using the dynamic gas-liquid absorption method. It was shown that serious errors could occur due to oxygen adsorption at the coal surface. Using the data of an independently measured adsorption isotherm, the real k(L)a could be calculated from the measured apparent k(L)a. The results show a k(L)a decrease of 40% to 50% at a volumetric solid hold-up of 28%. Estimation of the oxygen and carbon dioxide transfer rates, from the measured mass transfer coefficients, indicates that the stirred fermentor is suitable for kinetic experiments at high slurry densities, whereas the pachuca tank and shake flask are not.

18.
Biotechnol Bioeng ; 40(1): 16-24, 1992 Jun 05.
Article in English | MEDLINE | ID: mdl-18601039

ABSTRACT

For the application of immobilized enzymes, the influence of immobilization on the activity of the enzyme should be Known. This influence can be obtained by determining the intrinsic kinetic parameters of the immobilized enzyme, and by comparing them with the kinetic parameters of the suspended enzyme. This article deals with the determination of the intrinsic kinetic parameters of an agarose-gel bead immobilized oxygen-consuming enzyme: L-lactate 2-monooxygenase. The reaction rate of the enzyme can be described by Michaelis-Menten kinetics. Batch conversion experiments using a biological oxygen monitor, as well as steady-state profile measurements within the biocatalyst particles using an oxygen microsensor, were performed. Two different mathematical methods were used for the batch conversion experiments, both assuming a pseudosteady-state situation with respect to the shape of the profile inside the bead. One of the methods used an approximate relation for the effectiveness factor for Michaelis-Menten kinetics which interpolates between the analytical solutions for zero- and first-order kinetics. The other mathematical method was based on a numerical solution and combined a mass balance over the reactor with a mass balance over the bead. The main difference in the application of the two methods is the computer calculation time; the completely numerical calculation procedure was about 20 times slower than the other calculation procedure.The intrinsic kinetic parameters resulting from both experimental methods were compared to check the reliability of the methods. There was no significant difference in the intrinsic kinetic parameters obtained from the two experimental methods. By comparison of the kinetic parameters for the suspended enzyme with the intrinsic kinetic parameters for the immobilized enzyme, it appeared that immobilization caused a decrease in the value of V(m) by a factor of 2, but there was no significant difference in the values obtained for K(m).

19.
Biotechnol Bioeng ; 39(11): 1069-79, 1992 May.
Article in English | MEDLINE | ID: mdl-18600908

ABSTRACT

The chemical reactions involving carbon dioxide in mineral culture media are considered. A mathematic model is set up, based on published data, which is valid at pH values below 9, and in which the nonideality of the solution is taken into account. The crucial parameter is the constant expressing the equilibrium between carbon dioxide and bicarbonate, K(1).The reactions were studied in three different aqueous solutions: water, mineral salt medium, and a suspension with nongrowing bacterial cells. For each situation, three methods were compared for the determination of the bicarbonate concentration in the solution: equilibrium state total carbon analysis, dynamic monitoring of the rate of acid or alkali addition, and dynamic measurement of the carbon dioxide gas phase mole fraction.In a batch-stirred tank reactor, the equilibrium constant K(1) agreed with the published value, and the three bicarbonate analysis methods give the same results. If the nonideality is not taken into account, the result significantly differed from the published value and is likely to be incorrect.A real alkalophilic process, using Acinetobacter calcoaceticus in a continuous stirred tank reactor at steady state, also gave results that are in accord with the literature. However, the results do not allow validation of the equation expressing the nonideality.The steady state in the batch system and in continuous culture can be well described with the mathematical model. However, in the transient state there are some unexplained differences between simulation and measurement.

20.
Curr Opin Biotechnol ; 3(2): 130-8, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1368288

ABSTRACT

Fermentation processes are hampered by a variety of problems originating from the accumulation of products in the fermenter. Integration of fermentation and a primary product separation step can accelerate the product formation, improve the product yield, and facilitate downstream processing. The advantages of integrated bioprocesses, however, are counteracted by the incompatibility of the subprocesses. Over the past few years, research in this field has been directed towards the development of engineering tools to reduce integration problems, to select a suitable approach, and to predict the feasibility of the integrated process. More fundamental knowledge about metabolic pathways, control mechanisms, and process dynamics is needed in order to optimally design integrated systems.


Subject(s)
Biotechnology/methods , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...