Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 36(2): 213-224, 2021 02.
Article in English | MEDLINE | ID: mdl-33219893

ABSTRACT

The present study aimed to evaluate the effect of folic acid treatment in an animal model of aging induced by D-galactose (D-gal). For this propose, adult male Wistar rats received D-gal intraperitoneally (100 mg/kg) and/or folic acid orally (5 mg/kg, 10 mg/kg or 50 mg/kg) for 8 weeks. D-gal caused habituation memory impairment, and folic acid (10 mg/kg and 50 mg/kg) reversed this effect. However, folic acid 50 mg/kg per se caused habituation memory impairment. D-gal increased the lipid peroxidation and oxidative damage to proteins in the prefrontal cortex and hippocampus from rats. Folic acid (5 mg/kg, 10 mg/kg, or 50 mg/kg) partially reversed the oxidative damage to lipids in the hippocampus, but not in the prefrontal cortex, and reversed protein oxidative damage in the prefrontal cortex and hippocampus. D-gal induced synaptophysin and BCL-2 decrease in the hippocampus and phosphorylated tau increase in the prefrontal cortex. Folic acid was able to reverse these D-gal-related alterations in the protein content. The present study shows folic acid supplementation as an alternative during the aging to prevent cognitive impairment and brain alterations that can cause neurodegenerative diseases. However, additional studies are necessary to elucidate the effect of folic acid in aging.


Subject(s)
Aging/metabolism , Folic Acid/pharmacology , Habituation, Psychophysiologic/drug effects , Memory Disorders/prevention & control , Oxidative Stress/drug effects , Animals , Galactose , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar
2.
J Gerontol A Biol Sci Med Sci ; 76(6): 991-995, 2021 05 22.
Article in English | MEDLINE | ID: mdl-33249457

ABSTRACT

Folic acid (FA) supplementation is important during pregnancy to avoid malformations in the offspring. However, it is unknown if it can affect the offspring throughout their lives. To evaluate the offspring, female mother rats (dams) were separated into 5 groups: Four groups received the AIN-93 diet, divided into control and FA (5, 10, and 50 mg/kg), and an additional group received a FA-deficient diet, and the diet was performed during pregnancy and lactation. We evaluated the female offspring of these dams (at 2 and 18 months old). The aged offspring fed with FA-deficient diet presented habituation, spatial and aversive memory impairment and the FA maternal supplementation prevented this. The natural aging caused an increase in the TNF-α and IL-1ß levels in the hippocampus from 18-month-old offspring. FA maternal supplementation was able to prevent the increase of these cytokines. IL-4 levels decreased in the prefrontal cortex from aged control rats and FA prevented it. FA deficiency decreased the levels of IL-4 in the hippocampus of the young offspring. In addition, natural aging and FA deficiency decreased brain-derived neurotrophic factor levels in the hippocampus and nerve growth factor levels in the prefrontal cortex and FA supplementation prevented it. Thus, the present study shows for the first time the effect of FA maternal supplementation on memory, cytokines, and neurotrophins in the aged offspring.


Subject(s)
Dietary Supplements , Folic Acid/therapeutic use , Inflammation/prevention & control , Memory Disorders/prevention & control , Prenatal Exposure Delayed Effects/drug therapy , Aging/drug effects , Animals , Female , Folic Acid Deficiency/complications , Hippocampus/metabolism , Inflammation/etiology , Memory Disorders/etiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar
3.
Mol Neurobiol ; 56(4): 2606-2617, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30051350

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease which is characterized by progressive memory loss, the accumulation of ß-amyloid peptide (Aß) (mainly Aß1-42), and more recently, by neuroinflammation, which has been highlighted as playing a central role in the development and progress of AD. This study utilized 100-day-old Balb/c mice for the induction of an AD-like dementia model. The animals were administered with Aß1-42 oligomers (400 pmol/site) or artificial cerebrospinal fluid (ACSF) into the left cerebral ventricle. Twenty-four hours after intracerebroventricular administration, the animals were treated with minocycline (50 mg/kg, via oral gavage) for 17 days. The animals' locomotion was evaluated using the open-field test. The spatial memory was tested using the Y-maze, and the aversive memory was evaluated using the inhibitory avoidance task. Treatment with minocycline was shown to improve both spatial and aversive memories in mice that were submitted to the dementia model. In addition, minocycline reduced the levels of Aß and microglial activation in the animals that received the administration of Aß1-42 oligomers. Moreover, the results suggest that the decrease in microglial activation occurred because of a reduction in the levels of toll-like receptors 2 (TLR2) content, and its adapter protein MyD88, as well as a reduction in the levels of the protein NLRP3, which is indispensable in the assembly of inflammasome. These observations were evaluated via immunohistochemistry and confirmed using the Western blot analysis. Treatment with minocycline had no effect in preventing apoptotic morphologic alterations of the neurons. Thus, the anti-inflammatory effect of minocycline involves TLR2 receptors and NLRP3, besides being beneficial by ameliorating memory impairments. Graphical Abstract.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/toxicity , Minocycline/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Multimerization , Animals , Cell Survival/drug effects , Locomotion/drug effects , Male , Memory/drug effects , Mice, Inbred BALB C , Myeloid Differentiation Factor 88/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Toll-Like Receptor 2/metabolism
4.
Article in English | MEDLINE | ID: mdl-28336494

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of age-related dementia. Cognitive decline, beta-amyloid (Aß) accumulation, neurofibrillary tangles, and neuroinflammation are the main pathophysiological characteristics of AD. Minocycline is a tetracycline derivative with anti-inflammatory properties that has a neuroprotective effect. The aim of this study was to evaluate the effect of minocycline on memory, neurotrophins and neuroinflammation in an animal model of AD induced by the administration of Aß (1-42) oligomer. Male BALB/c mice were treated with minocycline (50mg/kg) via the oral route for a total of 17days, 24h after intracerebroventricular administration of Aß (1-42) oligomer. At the end of this period, was performed the radial maze test, and 24h after the last minocycline administration, serum was collected and the cortex and hippocampus were dissected for biochemical analysis. The administration of minocycline reversed the memory impairment caused by Aß (1-42). In the hippocampus, minocycline reversed the increases in the levels of interleukin (IL-1ß), Tumor Necrosis Factor- alpha (TNF-α) and, IL-10 caused by Aß (1-42). In the cortex, AD-like model increase the levels of IL-1ß, TNF-α and, IL-4. Minocycline treatment reversed this. In the serum, Aß (1-42) increased the levels of IL-1ß and IL-4, and minocycline was able to reverse this action, but not to reverse the decrease of IL-10 levels. Minocycline also reversed the increase in the levels of Brain-derived neurotrophic factor (BDNF) in the hippocampus caused by Aß (1-42), and reduced Nerve Growth Factor (NGF) increases in the total cortex. Therefore, our results indicate that minocycline causes improvements in the spatial memory, and cytokine levels were correlated with this effect in the brain it. Besides this, minocycline reduced BDNF and NGF levels, highlighting the promising effects of minocycline in treating AD-like dementia.


Subject(s)
Amyloid beta-Peptides/toxicity , Brain/drug effects , Inflammation/prevention & control , Memory Disorders/prevention & control , Minocycline/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/toxicity , Amyloid beta-Peptides/administration & dosage , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Inflammation/blood , Inflammation/chemically induced , Inflammation/metabolism , Infusions, Intraventricular , Interleukin-10/blood , Interleukin-10/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Interleukin-4/blood , Interleukin-4/metabolism , Male , Maze Learning/drug effects , Memory Disorders/blood , Memory Disorders/chemically induced , Memory Disorders/metabolism , Mice , Peptide Fragments/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
5.
Metab Brain Dis ; 32(3): 811-817, 2017 06.
Article in English | MEDLINE | ID: mdl-28236040

ABSTRACT

D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative damage; However, the effects of oral D-gal remain unclear. The aim of this study was to evaluate whether the oral administration of D-gal induces abnormalities within the mitochondrial respiratory chain of rats. Male Wistar rats (4 months old) received D-gal (100 mg/kg v.o.), during the 1st, 2nd, 4th, 6th or 8th weeks by oral gavage. The activity of the mitochondrial respiratory chain complexes was measured in the 1st, 2nd, 4th, 6th and 8th weeks after the administration of D-gal. The activity of the respiratory chain complex I was found to have increased in the prefrontal cortex and hippocampus in the 1st, 6th and 8th weeks, while the activity of the respiratory chain complex II increased in the 1st, 2nd, 4th, 6th and 8th weeks within the hippocampus and in the 2nd, 4th, 6th and 8th weeks within the prefrontal cortex. The activity of complex II-III increased within the prefrontal cortex and hippocampus in each week of oral D-gal treatment. The activity of complex IV increased within the prefrontal cortex and hippocampus in the 1st, 2nd, 6th and 8th weeks of treatment. After 4 weeks of treatment the activity increased only in hippocampus. In conclusion, the present study showed that the oral administration of D-gal increased the activity of the mitochondrial respiratory chain complexes I, II, II-III and IV in the prefrontal cortex and hippocampus. Furthermore, the administration of D-gal via the oral route seems to cause the alterations in the mitochondrial respiratory complexes observed in brain neurodegeneration.


Subject(s)
Electron Transport Complex I/metabolism , Galactose/administration & dosage , Hippocampus/metabolism , Mitochondria/metabolism , Prefrontal Cortex/metabolism , Administration, Oral , Animals , Brain/drug effects , Brain/metabolism , Galactose/toxicity , Hippocampus/drug effects , Male , Mitochondria/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...