Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 11(2): 275-91, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21274588

ABSTRACT

In potatoes and many other crops, drought is one of the most important environmental constraints leading to yield loss. Development of drought-tolerant cultivars is therefore required for maintaining yields under climate change conditions and for the extension of agriculture to sub-optimal cropping areas. Drought tolerance mechanisms have been well described for many crop plants including Native Andean potato. However, knowledge on tolerance traits suitable for commercial potato varieties is scarce. In order to describe drought tolerance mechanisms that sustain potato yield under water stress, we have designed a growth-chamber experiment with two Solanum tuberosum L. cultivars, the more drought tolerant accession 397077.16, and the sensitive variety Canchan. After 21 days of drought exposure, gene expression was studied in leaves using cDNA microarrays. The results showed that the tolerant clone presented more differentially expressed genes than the sensitive one, suggesting greater stress response and adaptation. Moreover, it exhibited a large pool of upregulated genes belonging to cell rescue and detoxication such as LEAs, dehydrins, HSPs, and metallothioneins. Transcription factors related to abiotic stresses and genes belonging to raffinose family oligosaccharide synthesis, involved in desiccation tolerance, were upregulated to a greater extent in the tolerant clone. This latter result was corroborated by biochemical analyses performed at 32 and 49 days after drought that showed an increase in galactinol and raffinose especially in clone 397077.16. The results depict key components for the drought tolerance of this advanced potato clone.


Subject(s)
Carbohydrate Metabolism/genetics , Droughts , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Clone Cells , Environmental Exposure , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Plant Proteins/genetics , Raffinose/genetics , Raffinose/metabolism , Selection, Genetic
2.
J Exp Bot ; 61(9): 2327-43, 2010 May.
Article in English | MEDLINE | ID: mdl-20406784

ABSTRACT

Two potato clones (Solanum tuberosum L.) of the Andean cultivar group, called Sullu and SS2613, with different drought-tolerance phenotypes were exposed to a continuously increasing drought stress in a field trial. At the physiological level, while relative leaf water contents were similar in both clones, osmotic potential was lower in Sullu and declined more strongly during drought compared with SS2613. In the drought-stressed plants, tuber yield was reduced by about 70% compared with control plants in both clones. Potato cDNA microarrays and target metabolite analysis were performed on leaves sampled at several time-points after the onset of drought. At the transcriptomic level, photosynthesis-related genes were already strongly repressed in Sullu after 28 d of withholding irrigation and even more strongly after a longer stress duration, whereas, in SS2613, repression occurred only after 49 d of soil drying; similarly, a strong perturbation of carbohydrate-related genes was observed in Sullu. At the metabolite level, differential accumulation of osmotically active solutes was observed between the two cultivars; indeed, in Sullu, contents of galactose, inositol, galactinol, proline, and proline analogues were higher upon drought stress compared with SS2613. These results point to different drought responses in the cultivars at the leaf level, with, however, similar tuber yield reductions. The previously shown tolerant clone Sullu lost part of its tolerance under the experimental conditions used here; it was, however, able to maintain an absolute yield three times higher than SS2613.


Subject(s)
Gene Expression Profiling , Metabolomics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Droughts , Gene Expression Regulation, Plant , Solanum tuberosum/chemistry , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...