Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 16029-16039, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511931

ABSTRACT

Despite the rapid expansion of the organic cathode materials field, we still face a shortage of materials obtained through simple synthesis that have stable cycling and high energy density. Herein, we report a two-step synthesis of a small organic molecule from commercially available precursors that can be used as a cathode material. Oxidized tetraquinoxalinecatechol (OTQC) was derived from tetraquinoxalinecatechol (TQC) by the introduction of additional quinone redox-active centers into the structure. The modification increased the voltage and capacity of the material. The OTQC delivers a high specific capacity of 327 mAh g-1 with an average voltage of 2.63 V vs Li/Li+ in the Li-ion battery. That corresponds to an energy density of 860 Wh kg-1 on the OTQC material level. Furthermore, the material demonstrated excellent cycling stability, having a capacity retention of 82% after 400 cycles. Similarly, the OTQC demonstrates increased average voltage and specific capacity in comparison with TQC in aqueous Zn-organic battery, reaching the specific capacity of 326 mAh g-1 with an average voltage of 0.86 V vs Zn/Zn2+. Apart from good electrochemical performance, this work provides an additional in-depth analysis of the redox mechanism and degradation mechanism related to capacity fading.

2.
Chem Mater ; 36(3): 1025-1040, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370280

ABSTRACT

Organic active materials are seen as next-generation battery materials that could circumvent the sustainability and cost limitations connected with the current Li-ion battery technology while at the same time enabling novel battery functionalities like a bioderived feedstock, biodegradability, and mechanical flexibility. Many promising research results have recently been published. However, the reproducibility and comparison of the literature results are somehow limited due to highly variable electrode formulations and electrochemical testing conditions. In this Perspective, we provide a critical view of the organic cathode active materials and suggest future guidelines for electrochemical characterization, capacity evaluation, and mechanistic investigation to facilitate reproducibility and benchmarking of literature results, leading to the accelerated development of organic electrode active materials for practical applications.

3.
Faraday Discuss ; 250(0): 110-128, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37987255

ABSTRACT

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond. Here, we present one of the first examples of a phenazine-based hybrid microporous polymer, referred to as IEP-27-SR, utilized as an organic cathode in an aluminium battery with an AlCl3/EMIMCl ionic liquid electrolyte. The preliminary redox and charge storage mechanism of IEP-27-SR was confirmed by ex situ ATR-IR and EDS analyses. The introduction of phenazine active units in a robust microporous framework resulted in a remarkable rate capability (specific capacity of 116 mA h g-1 at 0.5C with 77% capacity retention at 10C) and notable cycling stability, maintaining 75% of its initial capacity after 3440 charge-discharge cycles at 1C (127 days of continuous cycling). This superior performance compared to reported Al//n-type organic cathode RABs is attributed to the stable 3D porous microstructure and the presence of micro/mesoporosity in IEP-27-SR, which facilitates electrolyte permeability and improves kinetics.

4.
Article in English | MEDLINE | ID: mdl-37852614

ABSTRACT

Poly(2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate) (PTMA) is one of the most promising organic cathode materials thanks to its relatively high redox potential, good rate performance, and cycling stability. However, being a p-type material, PTMA-based batteries pose additional challenges compared to conventional lithium-ion systems due to the involvement of anions in the redox process. This study presents a comprehensive approach to optimize such batteries, addressing challenges in electrode design, scalability, and cost. Experimental results at a laboratory scale demonstrate high active mass loadings of PTMA electrodes (up to 9.65 mg cm-2), achieving theoretical areal capacities that exceed 1 mAh cm-2. Detailed physics-based simulations and cost and performance analysis clarify the critical role of the electrolyte and the impact of the anion amount in the PTMA redox process, highlighting the benefits and the drawbacks of using highly concentrated electrolytes. The cost and energy density of lithium metal batteries with such high mass loading PTMA cathodes were simulated, finding that their performance is inferior to batteries based on inorganic cathodes even in the most optimistic conditions. In general, this work emphasizes the importance of considering a broader perspective beyond the lab scale and highlights the challenges in upscaling to realistic battery configurations.

SELECTION OF CITATIONS
SEARCH DETAIL
...