Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 152: 484-494, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36028197

ABSTRACT

Poor tumor specificity is one of the key obstacles for clinical applications of nanotheranostic agents, consequently leading to serious side effects and unsatisfactory therapeutic efficacy. Herein, biomolecule-based nanohybrids (named as Hb-PDA-GOx) with multiple stimuli-responsiveness were designed and fabricated to enhance tumor-specific therapy. The nanohybrids embodied two proteins, i.e., hemoglobin (Hb) and glucose oxidase (GOx), which exhibited cascade catalytic activity selectively within the tumor microenvironment (TME). Specifically, GOx catalyzes the overexpressed glucose into gluconic acid and hydrogen peroxide (H2O2), which not only initiated starvation therapy (ST) through cutting off the nutrition supply for carcinoma cells, but also provided H2O2 for sequential Fenton reaction induced by Hb that generating biotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). Moreover, localized heat generation from polydopamine (PDA) in the nanohybrids can implement photothermal therapy (PTT) and reinforce the CDT efficacy. Excitingly, effective eradication of solid tumors and significant suppression of metastatic tumors growth were achieved by utilizing Hb-PDA-GOx as a versatile theranostic agent. All these results had been verified by in vitro and/or in vivo experiments. In light of the superior anticancer effects and insignificant systemic toxicity, the as-fabricated biomolecule-based nanohybrids could be employed as a promising agent for tumor-specific therapy. More importantly, the high biocompatibility and biodegradability of the selected biomolecules would facilitate subsequent clinical translation. STATEMENT OF SIGNIFICANCE: (1) A facile one-pot synthesis strategy was proposed to fabricate biomolecule-based tumor theranostic agent with high biocompatibility and biodegradability, which would facilitate subsequent clinical translation; (2) The as-developed theranostic agent was endowed with multiple stimuli-responsiveness for achieving tumor-specific and cascade-enhanced synergistic therapy; (3) The in vivo experiments demonstrated that the as-developed theranostic agent can not only effectively eradicate solid tumors, but also significantly suppress metastatic tumors growth.


Subject(s)
Nanoparticles , Neoplasms , Glucose/metabolism , Glucose Oxidase/therapeutic use , Humans , Hydrogen Peroxide/metabolism , Nanoparticles/therapeutic use , Neoplasms/pathology , Tumor Microenvironment
2.
ACS Appl Mater Interfaces ; 14(8): 10142-10153, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35175020

ABSTRACT

For harmonizing the contradiction of nanotheranostic agents between enhanced tumor accumulation and penetration, efficient cell internalization and fast elimination are key tactics for promoting their clinical applications. Herein, programmed stimuli-responsive poly(N-isopropylacrylamide)-carbon dot (PNIPAM-CD) hybrid nanogels are designed to address the abovementioned conflicts. The enlarged particle size of PNIPAM-CDs enables one to effectively improve their accumulation at tumor sites. Once the hybrid nanogels are docked in tumors and exposed to deep-red-light (660 nm) irradiation, heat and reactive oxygen species (ROS) are generated from the CDs, consequently activating photothermal therapy (PTT) and photodynamic therapy (PDT) effects and meanwhile inducing partial degradation of PNIPAM-CDs for deep tissue penetration. Further, enhanced cellular internalization of the functional components can be achieved owing to the pH-responsive charge reversal and temperature-dependent hydrophilic/hydrophobic conversion characteristics of PNIPAM-CDs. Finally, the overexpressed glutathione (GSH) in tumor cells would trigger further cleavage of the partially degraded hybrid nanogels, which is beneficial for their rapid clearance from the body. This work not only proposed a novel strategy to fabricate nanotheranostic agents using just a single functional component (i.e., the versatile CDs) to simplify the preparation process but also achieved effective delivery of agents into tumor cells by overcoming the multiple biological barriers to enhance therapeutic efficacy and decrease side effects.


Subject(s)
Nanoparticles , Photochemotherapy , Carbon/chemistry , Cell Line, Tumor , Nanogels , Phototherapy
3.
Analyst ; 145(8): 2982-2987, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32124898

ABSTRACT

Herein, we report a turn-on fluorimetric nanoprobe for intracellular glutathione (GSH) imaging. The principle of this probe is designed on the basis of the selective reduction between GSH and disulfide bond-based self-crosslinked red emissive carbon dots (abbreviated as SCCDs). The nanoprobe (i.e., SCCDs) was facilely fabricated from thiol-modified carbon dots (CDs) through oxidation in the presence of H2O2, and its fluorescence was greatly reduced due to the effect of aggregation induced quenching (AIQ). However, in the presence of GSH, the SCCDs were separated into many single CDs. As a result, the fluorescence of the nanoprobe was recovered in a GSH concentration-dependent manner, which is the basis for the quantitative analysis of GSH. The nanoprobe shows excellent specificity and a linear range from 0 to 0.15 mM towards GSH with a limit of detection (LOD) of 5.7 µM. Finally, the nanoprobe was demonstrated to have extremely low cytotoxicity, and was successfully applied for monitoring the GSH level in living cells. This work would provide a promising probe for the research of GSH in cytobiology.


Subject(s)
Disulfides/chemistry , Fluorescent Dyes/chemistry , Glutathione/analysis , Quantum Dots/chemistry , Animals , Carbon/chemistry , Carbon/toxicity , Cell Line, Tumor , Fluorescent Dyes/toxicity , Glutathione/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Mice , Oxidation-Reduction , Quantum Dots/toxicity , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...