Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 232: 113591, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839226

ABSTRACT

Pathogenic bacteria in drinking water threaten human health and life. In the work, antimicrobial films composed of myricetin@tannic acid (My@TA) nanoparticles (NPs) and chitosan derivation microgels were developed to kill pathogenic bacteria in drinking water. Hydrophobic My was first made into water soluble My@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of carboxymethyl chitosan (CMCS)/hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then fabricated with a blending method. CMCS&HACC/My@TA multilayer films were further deposited on the internal surface of PET bottles by using a layer-by-layer (LbL) assembly technique. The PET bottles coated with the films could effectively kill pathogenic bacteria in water such as S. aureus, E. coli, Staphylococcus epidermidis, Pseudomonas fluorescens, Listeria monocytogenes and methicillin resistant Staphylococcus aureus (MRSA). In addition, CMCS&HACC/My@TA films displayed good antioxidant activity, water resistance, and in vivo biocompatibility with heart, liver, spleen, lung and kidney organs. We believe that the container coated with CMCS&HACC/My@TA films can be applied to prevent microbial contamination of drinking water.


Subject(s)
Anti-Infective Agents , Chitosan , Drinking Water , Methicillin-Resistant Staphylococcus aureus , Microgels , Nanoparticles , Humans , Chitosan/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Escherichia coli , Anti-Infective Agents/pharmacology , Nanoparticles/chemistry , Tannins/chemistry
2.
Int J Biol Macromol ; 250: 126274, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37572812

ABSTRACT

Wound dressings capable of sterilizing pathogenic bacteria and scavenging free radicals are important to inhibit bacterial invasion and accelerate wound healing. The target of this work is to develop an antibacterial dressing by modifying bandages with films composed of biological macromolecule microgels and baicalein@tannic acid (Bai@TA) nanoparticles (NPs). Firstly, hydrophobic Bai was made into water soluble Bai@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of sodium carboxymethyl cellulose (CMC)&hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then prepared by a simple blending method. Further, CMC&HACC/Bai@TA multilayer films were deposited on medical bandages by using a layer-by-layer assembly technique to obtain an antibacterial dressing. The as-prepared dressings showed great antibacterial ability against E. coli, S. aureus and methicillin resistant Staphylococcus aureus (MRSA), excellent antioxidant activity and good biological safety. In addition, compared to conventional medical bandages, the dressings could efficaciously diminish inflammation in the wound, accelerate skin regeneration and functional restoration, and promote the in vivo healing speed of full-thickness skin wounds infected by MRSA. We believe that as a low-cost but effective wound dressing, the antibacterial bandage modified with CMC&HACC/Bai@TA films has potentials to replace traditional dressings in the clinical management of infected wounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...