Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Front Cardiovasc Med ; 11: 1374241, 2024.
Article in English | MEDLINE | ID: mdl-38841257

ABSTRACT

Hereditary transthyretin amyloid (ATTRv) cardiomyopathy (CM) is caused by mutations in the TTR gene. TTR mutations contribute to TTR tetramer destabilization and dissociation, leading to excessive deposition of insoluble amyloid fibrils in the myocardium and finally resulting in cardiac dysfunction. In this article, we report a case of a Chinese patient with transthyretin mutation p.D58Y and provide detailed information on cardiac amyloidosis, including transthoracic echocardiography, cardiac magnetic resonance, and SPECT imaging for the first time. Our report aims to provide a better understanding of ATTR genotypes and phenotypes.

2.
FASEB J ; 38(9): e23635, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690685

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.


Subject(s)
Biomarkers , Cardiovascular Diseases , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Animals
3.
Immunology ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637948

ABSTRACT

Immune cell infiltration is a significant pathological process in abdominal aortic aneurysms (AAA). T cells, particularly CD4+ T cells, are essential immune cells responsible for substantial infiltration of the aorta. Regulatory T cells (Tregs) in AAA have been identified as tissue-specific; however, the time, location, and mechanism of acquiring the tissue-specific phenotype are still unknown. Using single-cell RNA sequencing (scRNA-seq) on CD4+ T cells from the AAA aorta and spleen, we discovered heterogeneity among CD4+ T cells and identified activated, proliferating and developed aorta Tregs. These Tregs originate in the peripheral tissues and acquire the tissue-specific phenotype in the aorta. The identification of precursors for Tregs in AAA provides new insight into the pathogenesis of AAA.

4.
FASEB J ; 38(1): e23386, 2024 01.
Article in English | MEDLINE | ID: mdl-38112398

ABSTRACT

CD4+ T-cell counts are increased and activated in patients with chronic heart failure (CHF), whereas regulatory T-cell (Treg) expansion is inhibited, probably due to aberrant T-cell receptor (TCR) signaling. TCR signaling is affected by protein tyrosine phosphatase nonreceptor type 22 (PTPN22) in autoimmune disorders, but whether PTPN22 influences TCR signaling in CHF remains unclear. This observational case-control study included 45 patients with CHF [18 patients with ischemic heart failure versus 27 patients with nonischemic heart failure (NIHF)] and 16 non-CHF controls. We used flow cytometry to detect PTPN22 expression, tyrosine phosphorylation levels, zeta-chain-associated protein kinase, 70 kDa (ZAP-70) inhibitory residue tyrosine 292 and 319 phosphorylation levels, and CD4+ T cell and Treg proportions. We conducted lentivirus-mediated PTPN22 RNA silencing in isolated CD4+ T cells. PTPN22 expression increased in the CD4+ T cells of patients with CHF compared with that in controls. PTPN22 expression was positively correlated with left ventricular end-diastolic diameter and type B natriuretic peptide but negatively correlated with left ventricular ejection fraction in the NIHF group. ZAP-70 tyrosine 292 phosphorylation was decreased, which correlated positively with PTPN22 overexpression in patients with NIHF and promoted early TCR signaling. PTPN22 silencing induced Treg differentiation in CD4+ T cells from patients with CHF, which might account for the reduced frequency of peripheral Tregs in these patients. PTPN22 is a potent immunomodulator in CHF and might play an essential role in the development of CHF by promoting early TCR signaling and impairing Treg differentiation from CD4+ T cells.


Subject(s)
Heart Failure , Receptors, Antigen, T-Cell , Humans , Case-Control Studies , Stroke Volume , Receptors, Antigen, T-Cell/metabolism , Ventricular Function, Left , Protein Tyrosine Phosphatases , T-Lymphocytes, Regulatory , Tyrosine , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
5.
Front Immunol ; 14: 1129007, 2023.
Article in English | MEDLINE | ID: mdl-37228603

ABSTRACT

Background: Until now, few articles have revealed the potential roles of innate lymphoid cells (ILCs) in cardiovascular diseases. However, the infiltration of ILC subsets in ischemic myocardium, the roles of ILC subsets in myocardial infarction (MI) and myocardial ischemia-reperfusion injury (MIRI) and the related cellular and molecular mechanisms have not been described with a sufficient level of detail. Method: In the current study, 8-week-old male C57BL/6J mice were divided into three groups: MI, MIRI and sham group. Single-cell sequencing technology was used to perform dimensionality reduction clustering of ILC to analyze the ILC subset landscape at a single-cell resolution, and finally flow cytometry was used to confirm the existence of the new ILC subsets in different disease groups. Results: Five ILC subsets were found, including ILC1, ILC2a, ILC2b, ILCdc and ILCt. It is worth noting that ILCdc, ILC2b and ILCt were identified as new ILC subclusters in the heart. The cellular landscapes of ILCs were revealed and signal pathways were predicted. Furthermore, pseudotime trajectory analysis exhibited different ILC statuses and traced related gene expression in normal and ischemic conditions. In addition, we established a ligand-receptor-transcription factor-target gene regulatory network to disclose cell communications among ILC clusters. Moreover, we further revealed the transcriptional features of the ILCdc and ILC2a subsets. Finally, the existence of ILCdc was confirmed by flow cytometry. Conclusion: Collectively, by characterizing the spectrums of ILC subclusters, our results provide a new blueprint for understanding ILC subclusters' roles in myocardial ischemia diseases and further potential treatment targets.


Subject(s)
Immunity, Innate , Lymphocytes , Mice , Animals , Male , Lymphocytes/metabolism , Mice, Inbred C57BL , Heart , Transcription Factors/metabolism
6.
J Transl Med ; 21(1): 224, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973679

ABSTRACT

BACKGROUND: Both the crystalline and soluble forms of cholesterol increase macrophage secretion of interleukin 1ß (IL-1ß), aggravating the inflammatory response in atherosclerosis (AS). However, the link between cholesterol and regulatory T cells (Tregs) remains unclear. This study aimed to investigate the effect of cholesterol treatment on Tregs. METHODS: Differentiation of induced Tregs (iTregs) was analyzed using flow cytometry. The expression of hypoxia-inducible factor-1a (HIF-1a) and its target genes was measured by western blotting and/or RT-qPCR. Two reporter jurkat cell lines were constructed by lentiviral transfection. Mitochondrial function and the structure of natural Tregs (nTregs) were determined by tetramethylrhodamine (TMRM) and mitoSOX staining, Seahorse assay, and electron microscopy. The immunoregulatory function of nTregs was determined by nTreg-macrophage co-culture assay and ELISA. RESULTS: Cholesterol treatment suppressed iTreg differentiation and impaired nTreg function. Mechanistically, cholesterol induced the production of mitochondrial reactive oxygen species (mtROS) in naïve T cells, inhibiting the degradation of HIF-1α and unleashing its inhibitory effects on iTreg differentiation. Furthermore, cholesterol-induced mitochondrial oxidative damage impaired the immunosuppressive function of nTregs. Mixed lymphocyte reaction and nTreg-macrophage co-culture assays revealed that cholesterol treatment compromised the ability of nTregs to inhibit pro-inflammatory conventional T cell proliferation and promote the anti-inflammatory functions of macrophages. Finally, mitoTEMPO (MT), a specific mtROS scavenger, restored iTreg differentiation and protected nTreg from further deterioration. CONCLUSION: Our findings suggest that cholesterol may aggravate inflammation within AS plaques by acting on both iTregs and nTregs, and that MT may be a promising anti-atherogenic drug.


Subject(s)
Inflammation , T-Lymphocytes, Regulatory , Humans , Cell Differentiation , Inflammation/metabolism , Mitochondria/metabolism , Coculture Techniques , Forkhead Transcription Factors/metabolism
7.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36902000

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of mortality globally. Circular RNAs (circRNAs) have attracted extensive attention for their roles in the physiological and pathological processes of various cardiovascular diseases (CVDs). In this review, we briefly describe the current understanding of circRNA biogenesis and functions and summarize recent significant findings regarding the roles of circRNAs in CVDs. These results provide a new theoretical basis for diagnosing and treating CVDs.


Subject(s)
Cardiovascular Diseases , RNA, Circular , Humans , RNA, Circular/genetics , Cardiovascular Diseases/pathology
8.
Int Immunopharmacol ; 114: 109561, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36700766

ABSTRACT

BACKGROUND: Increased inflammatory exudation caused by endothelium and endothelial junction damage is a typical pathological feature of acute respiratory distress syndrome/acute lung injury (ARDS/ALI). Previous studies have shown that phospholipase D2 (PLD2) can increase the inflammatory response and has a close relationship with the severity of sepsis-induced ALI and the mortality of sepsis, but its mechanism is unknown. This study explored the effect and mechanism of PLD2 deletion on the structure and function of endothelial tight junction (TJ) in lipopolysaccharide (LPS)-induced ALI. METHODS: We used C57BL/6 mice (wild-type and PLD2 knockout (PLD2-/-)) and human umbilical vein endothelial cell (HUVEC) models of sepsis-ALI. The pathological changes were evaluated by hematoxylin-eosin staining. Pulmonary vascular permeability was detected using wet-dry ratio, fluorescein isothiocyanate (FITC)-dextran, FITC-albumin, and immunoglobulin M concentration of bronchoalveolar lavage fluid. FITC-dextran and trans-endothelial electrical resistance assay were used to evaluate endothelial permeability on LPS-stimulated HUVECs. The mRNA expressions of TJ proteins were detected by real-time quantitative polymerase chain reaction. Then, protein levels were detected through Western blot analysis and immunofluorescence. The content of phosphatidic acid (PA), a downstream product of PLD2, was detected using an enzyme-linked immunosorbent assay kit. RESULTS: PLD2 deficiency not only alleviated lung histopathological changes and improved pulmonary vascular permeability but also increased the survival rate of ALI mice. Knockout of PLD2 or treatment with the PLD2 inhibitor can reduce the damage of endothelial TJ proteins, namely, claudin5, occludin and zonula occludens protein-1, in sepsis-ALI mice and LPS-stimulated HUVECs. The level of the PLD2 catalytic product PA increased in LPS-stimulated HUVECs, and exogenous PA can reduce the TJ protein expression and increase signal transducer and activator of transcription 3 (STAT3) phosphorylation in vitro. Inhibition of STAT3 phosphorylation attenuated PA-induced degradation of endothelial TJs. CONCLUSION: PLD2 knockout or inhibition may protect against LPS-induced lung injury by regulating the PA/STAT3 phosphorylation/endothelial TJ axis.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Sepsis , Humans , Mice , Animals , Phosphorylation , Tight Junctions , Acute Lung Injury/chemically induced , Lipopolysaccharides/pharmacology , STAT3 Transcription Factor/metabolism , Mice, Knockout , Mice, Inbred C57BL , Respiratory Distress Syndrome/metabolism , Tight Junction Proteins/metabolism , Sepsis/metabolism
9.
Front Immunol ; 14: 1282072, 2023.
Article in English | MEDLINE | ID: mdl-38283337

ABSTRACT

Background: According to some recent observational studies, the gut microbiota influences atherosclerosis via the gut microbiota-artery axis. However, the causal role of the gut microbiota in atherosclerosis remains unclear. Therefore, we used a Mendelian randomization (MR) strategy to try to dissect this causative link. Methods: The biggest known genome-wide association study (GWAS) (n = 13,266) from the MiBioGen collaboration was used to provide summary data on the gut microbiota for a two-sample MR research. Data on atherosclerosis were obtained from publicly available GWAS data from the FinnGen consortium, including cerebral atherosclerosis (104 cases and 218,688 controls), coronary atherosclerosis (23,363 cases and 187,840 controls), and peripheral atherosclerosis (6631 cases and 162,201 controls). The causal link between gut microbiota and atherosclerosis was investigated using inverse variance weighting, MR-Egger, weighted median, weighted mode, and simple mode approaches, among which inverse variance weighting was the main research method. Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables (IVs), and the MR Egger intercept test was used to assess the pleiotropy of IVs. Results: Inverse-variance-weighted (IVW) estimation showed that genus Ruminiclostridium 9 had a protective influence on cerebral atherosclerosis (OR = 0.10, 95% CI: 0.01-0.67, P = 0.018), while family Rikenellaceae (OR = 5.39, 95% CI: 1.50-19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95% CI: 1.60-29.49, P = 0.010), genus Paraprevotella (OR = 2.88, 95% CI: 1.18-7.05, P = 0.021), and genus Streptococcus (OR = 5.26, 95% CI: 1.28-21.61, P = 0.021) had pathogenic effects on cerebral atherosclerosis. For family Acidaminococcaceae (OR = 0.87, 95% CI: 0.76-0.99, P = 0.039), the genus Desulfovibrio (OR = 0.89, 95% CI: 0.80-1.00, P = 0.048), the genus RuminococcaceaeUCG010 (OR = 0.80, 95% CI: 0.69-0.94, P = 0.006), and the Firmicutes phyla (OR = 0.87, 95% CI: 0.77-0.98, P = 0.023) were protective against coronary atherosclerosis. However, the genus Catenibacterium (OR = 1.12, 95% CI: 1.00-1.24, P = 0.049) had a pathogenic effect on coronary atherosclerosis. Finally, class Actinobacteria (OR = 0.83, 95% CI: 0.69-0.99, P = 0.036), family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61-0.94, P = 0.013), genus Coprococcus2 (OR = 0.76, 95% CI: 0.60-0.96, P = 0.022), and genus RuminococcaceaeUCG010 (OR = 0.65, 95% CI: 0.46-0.92, P = 0.013), these four microbiota have a protective effect on peripheral atherosclerosis. However, for the genus Lachnoclostridium (OR = 1.25, 95% CI: 1.01-1.56, P = 0.040) and the genus LachnospiraceaeUCG001 (OR = 1.22, 95% CI: 1.04-1.42, P = 0.016), there is a pathogenic role for peripheral atherosclerosis. No heterogeneity was found for instrumental variables, and no considerable horizontal pleiotropy was observed. Conclusion: We discovered that the presence of probiotics and pathogens in the host is causally associated with atherosclerosis, and atherosclerosis at different sites is causally linked to specific gut microbiota. The specific gut microbiota associated with atherosclerosis identified by Mendelian randomization studies provides precise clinical targets for the treatment of atherosclerosis. In the future, we can further examine the gut microbiota's therapeutic potential for atherosclerosis if we have a better grasp of the causal relationship between it and atherosclerosis.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Gastrointestinal Microbiome , Intracranial Arteriosclerosis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Bacteroidetes , Clostridiales
10.
JACC Basic Transl Sci ; 7(9): 934-947, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36317128

ABSTRACT

Emerging evidence supports that intestinal microbial metabolite short-chain fatty acids (SCFAs) increase the pool of regulatory T cells (Tregs) in the colonic lamina propria (cLP) and protect against nonintestinal inflammatory diseases, such as atherosclerosis and post-infarction myocardial inflammation. However, whether and how SCFAs protect the inflamed aortas of subjects with abdominal aortic aneurysm (AAA) remains unclear. Here, the authors revealed the protective effect of SCFAs on AAA in mice and the expansion of Tregs in the cLP, and propionate exerted Treg-dependent protection against AAA by promoting the recirculation of cLP-Tregs through colonic draining lymph nodes (dLNs) to the inflamed aorta.

11.
Adv Sci (Weinh) ; 9(9): e2104338, 2022 03.
Article in English | MEDLINE | ID: mdl-35332699

ABSTRACT

In addition to maintaining immune tolerance, Foxp3+ regulatory T cells (Tregs) perform specialized functions in tissue homeostasis and remodeling. However, whether Tregs in aortic aneurysms have a tissue-specific phenotype and function is unclear. Here, a special group of Tregs that potentially inhibit abdominal aortic aneurysm (AAA) progression are identified and functionally characterized. Aortic Tregs gradually increase during the process of AAA and are mainly recruited from peripheral circulation. Single-cell TCR sequencing and bulk RNA sequencing demonstrate their unique phenotype and highly expressed trefoil factor 1 (Tff1). Foxp3cre/cre Tff1flox/flox mice are used to clarify the role of Tff1 in AAA, suggesting that aortic Tregs secrete Tff1 to regulate smooth muscle cell (SMC) survival. In vitro experiments confirm that Tff1 inhibits SMC apoptosis through the extracellular signal-regulated kinase (ERK) 1/2 pathway. The findings reveal a tissue-specific phenotype and function of aortic Tregs and may provide a promising and novel approach for the prevention of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , T-Lymphocytes, Regulatory , Trefoil Factor-1 , Animals , Aorta/metabolism , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Mice , Mice, Inbred C57BL , Phenotype , T-Lymphocytes, Regulatory/metabolism , Trefoil Factor-1/genetics
12.
J Vis Exp ; (179)2022 01 19.
Article in English | MEDLINE | ID: mdl-35129168

ABSTRACT

Acute myocardial infarction is a common cardiovascular disease with high mortality. Myocardial reperfusion injury can counteract the beneficial effects of heart reflow and induce secondary myocardial injury. A simple and reproducible model of myocardial infarction and myocardial ischemia-reperfusion injury is a good tool for researchers. Here, a customizable method to create a myocardial infarction (MI) model and MIRI by precision ligation of the left anterior descending coronary artery (LAD) through micromanipulation is described. Accurate and reproducible ligature positioning of the LAD helps obtain consistent results for heart injury. ST-segment changes can help to identify model accuracy. The serum level of cardiac troponin T (cTnT) is used to assess the myocardial injury, cardiac ultrasound is employed to evaluate the myocardial systolic function, and Evans-Blue/triphenyl tetrazolium chloride staining is used to measure infarct size. In general, this protocol reduces procedure duration, ensures controllable infarct size, and improves mouse survival.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Heart , Mice , Myocardial Reperfusion Injury/diagnostic imaging , Myocardium , Troponin T
13.
FASEB J ; 36(3): e22172, 2022 03.
Article in English | MEDLINE | ID: mdl-35133017

ABSTRACT

Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte-macrophage colony-stimulating factor (GM-CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM-CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM-CSF upregulated the expression of interferon regulatory factor 5 to promote M1-like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM-CSF produced by Tconvs enhanced the polarization of M1-like macrophages and exacerbated AAA formation. Our findings revealed that GM-CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL
14.
Basic Res Cardiol ; 116(1): 46, 2021 07 24.
Article in English | MEDLINE | ID: mdl-34302556

ABSTRACT

Overactivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C-C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.


Subject(s)
B-Lymphocytes, Regulatory , Myocardial Infarction , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Monocytes , Ventricular Remodeling
15.
Biochem Biophys Res Commun ; 547: 139-147, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33610913

ABSTRACT

Fibrotic scarring is tightly linked to the development of heart failure in patients with post-myocardial infarction (MI). Atypical chemokine receptor 4 (ACKR4) can eliminate chemokines, such as C-C chemokine ligand 21 (CCL21), which is independently associated with heart failure mortality. However, the role of ACKR4 in the heart during MI is unrevealed. This study aimed to determine whether ACKR4 modulates cardiac remodeling following MI and to illuminate the potential molecular mechanisms. The expression of ACKR4 was upregulated in the border/infarct area, and ACKR4 was predominantly expressed in cardiac fibroblasts (CFs). Knockout of ACKR4 protected against adverse ventricular remodeling in mice post-MI. These protective effects of ACKR4 deficiency were independent of dendritic cell immune response but could be attributed to downregulated CF-derived IL-6, affecting CF proliferation and endothelial cell (EC) functions, which consequently inhibited cardiac fibrosis. ACKR4 promoted IL-6 generation and proliferation of CFs. Besides, ACKR4 induced endothelial-to-mesenchymal transition (EndMT) in ECs through IL-6 paracrine effect. The p38 MAPK/NF-κB signaling pathway was involved in ACKR4 facilitated IL-6 generation. Moreover, ACKR4 overexpression in vivo via AAV9 carrying a periostin promoter aggravated heart functional impairment post-MI, which was abolished by IL-6 neutralizing antibody. Therefore, our study established a novel link between ACKR4 and IL-6 post-MI, indicating that ACKR4 may be a novel therapeutic target to ameliorate cardiac remodeling.


Subject(s)
Fibroblasts/metabolism , Interleukin-6/antagonists & inhibitors , Myocardial Infarction/metabolism , Receptors, CCR/deficiency , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Receptors, CCR/genetics , Receptors, CCR/metabolism , Signal Transduction
16.
Circulation ; 142(20): 1956-1973, 2020 11 17.
Article in English | MEDLINE | ID: mdl-32985264

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs), traditionally recognized as potent suppressors of immune response, are increasingly attracting attention because of a second major function: residing in parenchymal tissues and maintaining local homeostasis. However, the existence, unique phenotype, and function of so-called tissue Tregs in the heart remain unclear. METHODS: In mouse models of myocardial infarction (MI), myocardial ischemia/reperfusion injury, or cardiac cryoinjury, the dynamic accumulation of Tregs in the injured myocardium was monitored. The bulk RNA sequencing was performed to analyze the transcriptomic characteristics of Tregs from the injured myocardium after MI or ischemia/reperfusion injury. Photoconversion, parabiosis, single-cell T-cell receptor sequencing, and adoptive transfer were applied to determine the source of heart Tregs. The involvement of the interleukin-33/suppression of tumorigenicity 2 axis and Sparc (secreted acidic cysteine-rich glycoprotein), a molecule upregulated in heart Tregs, was further evaluated in functional assays. RESULTS: We showed that Tregs were highly enriched in the myocardium of MI, ischemia/reperfusion injury, and cryoinjury mice. Transcriptomic data revealed that Tregs isolated from the injured hearts had plenty of differentially expressed transcripts in comparison with their lymphoid counterparts, including heart-draining lymphoid nodes, with a phenotype of promoting infarct repair, indicating a unique characteristic. The heart Tregs were accumulated mainly because of recruitment from the circulating Treg pool, whereas local proliferation also contributed to their expansion. Moreover, a remarkable case of repeatedly detected T-cell receptor of heart Tregs, more than that of spleen Tregs, suggests a model of clonal expansion. Besides, HelioshighNrp-1high phenotype proved the mainly thymic origin of heart Tregs, with a small contribution of phenotypic conversion of conventional CD4+ T cells, proved by the analysis of T-cell receptor repertoires and conventional CD4+ T cells adoptive transfer experiments. The interleukin-33/suppression of tumorigenicity 2 axis was essential for sustaining heart Treg populations. Last, we demonstrated that Sparc, which was highly expressed by heart Tregs, acted as a critical factor to protect the heart against MI by increasing collagen content and boosting maturation in the infarct zone. CONCLUSIONS: We identified and characterized a phenotypically and functionally unique population of heart Tregs that may lay the foundation to harness Tregs for cardioprotection in MI and other cardiac diseases.


Subject(s)
Adoptive Transfer , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Interleukin-33/immunology , Mice , Myocardial Infarction/immunology , Myocardial Reperfusion Injury/immunology , Myocardium/pathology , Osteonectin/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/pathology
18.
FASEB J ; 34(2): 3224-3238, 2020 02.
Article in English | MEDLINE | ID: mdl-31917470

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is common clinical complication, which represents significant challenge in the treatment of acute myocardial infarction (AMI) diseases. Interleukin 35 (IL-35) exhibits anti-inflammatory properties via the engagement of the gp130, IL-12Rß2 and IL-27Rα receptors. However, whether IL-35 plays a beneficial role in the treatment of MIRI and potential underling mechanism are unclear. We showed that IL-35 conferred protection from MIRI as demonstrated by reduced infarct size and cardiac troponin T, improved cardiac function and decreased cardiomyocyte apoptosis in a mouse model. Despite activation of both STAT3 and STAT5 phosphorylation in the heart by IL-35, signal transducers and activators of transcription 3 (STAT3) was essential for mediating the IL-35-mediated protective effect on MIRI using cardiomyocyte-specific STAT3 deficient mice. Furthermore, gp130 was required for the STAT3 activation and cardio-protection induced by IL-35. Interestingly, IL-35 induced gp130 homodimer and gp130/IL-12Rß2 heterodimers in cardiomyocyte. Our results indicate that IL-35 can execute a protective role against MIRI through a novel signaling pathway, IL-35-gp130-STAT3 pathway, in cardiomyocytes, which may be beneficial for the development of novel and effective therapeutic approaches to treat the MIRI.


Subject(s)
Cytokine Receptor gp130/metabolism , Interleukins/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis , Cell Line , Cells, Cultured , Interleukins/pharmacology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Troponin T/metabolism
19.
Eur Heart J ; 40(48): 3924-3933, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31365073

ABSTRACT

AIMS: A persistent cardiac T-cell response initiated by myocardial infarction is linked to subsequent adverse ventricular remodelling and progression of heart failure. No data exist on T-cell receptor (TCR) repertoire changes in combination with phenotypic characterization of T cells in ischaemic failing human hearts. METHODS AND RESULTS: Analysis of TCR repertoire with high-throughput sequencing revealed that compared with T cells in control hearts, those in ischaemic failing hearts showed a clonally expanded TCR repertoire but similar usage patterns of TRBV-J rearrangements and V gene segments; compared with T cells in peripheral blood, those in ischaemic failing hearts exhibited a restricted and clonally expanded TCR repertoire and different usage patterns of TRBV-J rearrangements and V gene segments, suggesting the occurrence of tissue-specific T-cell expansion in ischaemic failing hearts. Consistently, TCR clonotype sharing was prominent in ischaemic failing hearts, especially in hearts of patients who shared human leucocyte antigen (HLA) alleles. Furthermore, ischaemia heart failure (IHF) heart-associated clonotypes were more frequent in peripheral blood of IHF patients than in that of controls. Heart-infiltrating T cells displayed memory- and effector-like characteristics. Th1 cells were the predominant phenotype among CD4+ T cells; CD8+ T cells were equally as abundant as CD4+ T cells and produced high levels of interferon-γ, granzyme B, and perforin. CONCLUSION: We provide novel evidence for a tissue-specific T-cell response predominated by Th1 cells and cytotoxic CD8+ T cells in ischaemic failing human hearts that may contribute to the progression of heart failure.


Subject(s)
Heart Failure/pathology , Myocardial Infarction/pathology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Clone Cells/metabolism , Disease Progression , Granzymes/metabolism , Heart Failure/metabolism , Humans , Immunologic Memory/genetics , Interferon-gamma/metabolism , Ischemia , Myocardial Infarction/metabolism , Perforin/metabolism , Phenotype , Ventricular Remodeling
20.
Anticancer Drugs ; 30(5): 458-465, 2019 06.
Article in English | MEDLINE | ID: mdl-30920400

ABSTRACT

Lung cancer remains the leading cause of cancer-associated mortality in China and the world. Increasing numbers of studies have reported that sphingosine kinase 1 (SPK1) is frequently highly expressed in tumors of various origins, including lung cancer, and its high expression contributes toward tumor progression. However, the clinical significance of SPK1 and its role in the growth and metastasis of non-small-cell lung cancer (NSCLC) remain unclear. In the present study, we found that SPK1 expression was expressed highly in NSCLC tissues and cell lines. Knockdown of SPK1 suppressed cell growth, proliferation, migration, and invasion and increased apoptosis. Moreover, knocking down SPK1 expression inhibited the growth of tumors in nude mice. Mechanistically, silencing the expression of SPK1 inhibited the expression of p-extracellular signal-regulated kinase (ERK). Moreover, the ERK-specific inhibitor U0126 suppressed the expression of the epithelial-mesenchymal transition of lung cancer cells. Together, our findings indicated that SPK1 enhanced tumor growth in lung cancer and induced metastasis by activating the ERK1/2 signaling pathway, indicating its potential application in NSCLC diagnosis and therapy.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Case-Control Studies , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...