Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(10): e0286426, 2023.
Article in English | MEDLINE | ID: mdl-37792772

ABSTRACT

Ischemia stroke and epilepsy are two neurological diseases that have significant patient and societal burden, with similar symptoms of neurological deficits. However, the underlying mechanism of their co-morbidity are still unclear. In this study, we performed a combined analysis of six gene expression profiles (GSE58294, GSE22255, GSE143272, GSE88723, GSE163654, and GSE174574) to reveal the common mechanisms of IS and epilepsy. In the mouse datasets, 74 genes were co-upregulated and 7 genes were co-downregulated in the stroke and epilepsy groups. Further analysis revealed that the co-expressed differentially expressed genes (DEGs) were involved in negative regulation of angiogenesis and the MAPK signaling pathway, and this was verified by Gene Set Enrichment Analysis of human datasets and single cell RNA sequence of middle cerebral artery occlusion mice. In addition, combining DEGs of human and mouse, PTGS2, TMCC3, KCNJ2, and GADD45B were identified as cross species conserved hub genes. Meanwhile, molecular docking results revealed that trichostatin A and valproic acid may be potential therapeutic drugs. In conclusion, to our best knowledge, this study conducted the first comorbidity analysis of epilepsy and ischemic stroke to identify the potential common pathogenic mechanisms and drugs. The findings may provide an important reference for the further studies on post-stroke epilepsy.


Subject(s)
Epilepsy , Stroke , Humans , Mice , Animals , Gene Expression Profiling/methods , Molecular Docking Simulation , Transcriptome , Stroke/genetics , Stroke/metabolism , Epilepsy/genetics
3.
Aging (Albany NY) ; 15(12): 5497-5513, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37382646

ABSTRACT

Ischemic stroke (IS) is a fatal neurological disease that occurs when the blood flow to the brain is disrupted, leading to brain tissue damage and functional impairment. Cellular senescence, a vital characteristic of aging, is associated with a poor prognosis for IS. This study explores the potential role of cellular senescence in the pathological process following IS by analyzing transcriptome data from multiple datasets (GSE163654, GSE16561, GSE119121, and GSE174574). By using bioinformatics methods, we identified hub-senescence-related genes such as ANGPTL4, CCL3, CCL7, CXCL16, and TNF and verified them using quantitative reverse transcription polymerase chain reaction. Further analysis of single-cell RNA sequencing data suggests that MG4 microglial is highly correlated with cellular senescence in MCAO, and might play a crucial role in the pathological process after IS. Additionally, we identified retinoic acid as a potential drug for improving the prognosis of IS. This comprehensive investigation of cellular senescence in various brain tissues and peripheral blood cell types provides valuable insights into the underlying mechanisms of the pathology of IS and identifies potential therapeutic targets for improving patient outcomes.


Subject(s)
Ischemic Stroke , Humans , Ischemic Stroke/pathology , Brain/metabolism , Transcriptome , Aging/genetics , Cellular Senescence/genetics , Sequence Analysis, RNA
4.
Funct Integr Genomics ; 23(3): 199, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37278873

ABSTRACT

Silicosis is an occupational lung disease that is common worldwide. In recent years, coronavirus disease 2019 (COVID-19) has provided daunting challenges to public healthcare systems globally. Although multiple studies have shown a close link between COVID-19 and other respiratory diseases, the inter-relational mechanisms between COVID-19 and silicosis remain unclear. This study aimed to explore the shared molecular mechanisms and drug targets of COVID-19 and silicosis. Gene expression profiling identified four modules that were most closely associated with both diseases. Furthermore, we performed functional analysis and constructed a protein-protein interaction network. Seven hub genes (budding uninhibited by benzimidazoles 1 [BUB1], protein regulator of cytokinesis 1 [PRC1], kinesin family member C1 [KIFC1], ribonucleotide reductase regulatory subunit M2 [RRM2], cyclin-dependent kinase inhibitor 3 [CDKN3], Cyclin B2 [CCNB2], and minichromosome maintenance complex component 6 [MCM6]) were involved in the interaction between COVID-19 and silicosis. We investigated how diverse microRNAs and transcription factors regulate these seven genes. Subsequently, the correlation between the hub genes and infiltrating immune cells was explored. Further in-depth analyses were performed based on single-cell transcriptomic data from COVID-19, and the expression of hub-shared genes was characterized and located in multiple cell clusters. Finally, molecular docking results reveal small molecular compounds that may improve COVID-19 and silicosis. The current study reveals the common pathogenesis of COVID-19 and silicosis, which may provide a novel reference for further research.


Subject(s)
COVID-19 , Silicosis , Humans , COVID-19/genetics , Molecular Docking Simulation , Protein Interaction Maps/genetics , Computational Biology/methods , Gene Expression Profiling , Silicosis/genetics
5.
Front Genet ; 13: 992847, 2022.
Article in English | MEDLINE | ID: mdl-36105086

ABSTRACT

Ischemic stroke (IS) is a disease characterized by rapid progression and high mortality and disability rates. Its pathophysiological process is inseparable from immune dysfunction. Recently, chromatin regulators (CRs) have been described as a class of enzymes that can recognize, form, and maintain the epigenetic state of an organism, and are closely associated with immune regulation. Nevertheless, the role of CR-related genes in IS has not been fully elucidated. In this study, seven CR-related immune biomarkers in the GSE58294 and GSE22255 datasets were identified by combining differential gene expression analysis, weighted correlation network analysis, and single sample gene set enrichment analysis. After experimental validation using quantitative polymerase chain reaction, four genes (DPF2, LMNB1, MLLT3, and JAK2) were screened as candidate immune biomarkers. These four biomarkers demonstrated good predictive power in the clinical risk model (area under the curve, 0.775). Molecular docking simulations revealed that mevastatin, WP1066, cladribine, trichostatin A, mequitazine, and zuclomiphene may be potential immunomodulatory drugs for IS. Overall, the results of this study contribute to the identification of CR-related immune therapeutics target in IS and provide an important reference for further research.

6.
Biomedicines ; 10(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35453655

ABSTRACT

Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.

7.
Front Genet ; 13: 1036345, 2022.
Article in English | MEDLINE | ID: mdl-36685826

ABSTRACT

Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving several pathological mechanisms. Modification of 7-methylguanosine (m7G) has multiple regulatory functions. However, the expression pattern and mechanism of m7G in IS remain unknown. Herein, we aimed to explore the effect of m7G modification on IS. Methods: We screened significantly different m7G-regulated genes in Gene Expression Omnibus datasets, GSE58294 and GSE22255. The random forest (RF) algorithm was selected to identify key m7G-regulated genes that were subsequently validated using the middle cerebral artery occlusion (MCAO) model and quantitative polymerase chain reaction (qPCR). A risk model was subsequently generated using key m7G-regulated genes. Then, "ConsensusClusterPlus" package was used to distinguish different m7G clusters of patients with IS. Simultaneously, between two m7G clusters, differentially expressed genes (DEGs) and immune infiltration differences were also explored. Finally, we investigated functional enrichment and the mRNA-miRNA-transcription factor network of DEGs. Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 were key m7G-related genes in IS that could accurately predict clinical risk (area under the curve = 0.967). NCBP2 was the most significantly associated gene with immune infiltration. Based on the expression profiles of these key m7G-related genes, the IS group could be divided into two clusters. According to the single-sample gene set enrichment analysis algorithm, four types of immune cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells) were significantly different in the two m7G clusters. The functional enrichment of 282 DEGs between the two clusters was mainly concentrated in the "regulation of apoptotic signaling pathway," "cellular response to DNA damage stimulus," "adaptive immune system," and "pyroptosis." The miR-214-LTF-FOXJ1 axis may be a key regulatory pathway for IS. Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 may serve as potential diagnostic biomarkers for IS and that the m7G clusters developed by these genes provide more evidence for the regulation of m7G in IS.

SELECTION OF CITATIONS
SEARCH DETAIL
...