Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 19(6): e2300662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863126

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aß42 were investigated. We found that CQ could reduce Aß42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aß42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.


Subject(s)
Amyloid beta-Peptides , Antioxidants , Clioquinol , Glutathione , Oxidative Stress , Reactive Oxygen Species , Saccharomyces cerevisiae , Oxidative Stress/drug effects , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Clioquinol/pharmacology , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Peptide Fragments/metabolism , Molecular Docking Simulation , Catalase/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...