Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Supercomput ; 79(3): 3157-3180, 2023.
Article in English | MEDLINE | ID: mdl-36060093

ABSTRACT

Feature selection plays a very significant role for the success of pattern recognition and data mining. Based on the maximal relevance and minimal redundancy (mRMR) method, combined with feature subset, this paper proposes an improved maximal relevance and minimal redundancy (ImRMR) feature selection method based on feature subset. In ImRMR, the Pearson correlation coefficient and mutual information are first used to measure the relevance of a single feature to the sample category, and a factor is introduced to adjust the weights of the two measurement criteria. And an equal grouping method is exploited to generate candidate feature subsets according to the ranking features. Then, the relevance and redundancy of candidate feature subsets are calculated and the ordered sequence of these feature subsets is gained by incremental search method. Finally, the final optimal feature subset is obtained from these feature subsets by combining the sequence forward search method and the classification learning algorithm. Experiments are conducted on seven datasets. The results show that ImRMR can effectively remove irrelevant and redundant features, which can not only reduce the dimension of sample features and time of model training and prediction, but also improve the classification performance.

2.
Sci Rep ; 12(1): 9739, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697771

ABSTRACT

Birds are a kind of environmental indicator organism, which can reflect the changes in the ecological environment and biodiversity, and recognition of birdsongs can further help understand and protect birds and natural environment. Extreme learning machine (ELM) has the advantages of fast learning speed and good generalization ability, which is widely used in classification and recognition problems. Input layer weights and hidden layer thresholds are two key factors affecting ELM performance. As one of swarm intelligence optimization methods, differential evolution (DE) can be used to optimize the parameters of ELM. In order to enhance the diversity, convergence speed and global search ability of the DE population, and improve the accuracy and stability of the classification model, this paper proposes a multi-strategy differential evolution method (M-SDE) to optimize the parameters of the ELM. And the differential MFCC feature parameters, extracted from birdsongs, are applied to build classification models of M-SDE_ELM and an ensemble M-SDE_EnELM with optimized ELM for bird species recognition. In the experiments, the ELM models optimized by the swarm intelligence algorithms PSO and GOA are compared and analyzed by hypothesis tests with the M-SDE_ELM and M-SDE_EnELM. Results show that the M-SDE_ELM and M-SDE_EnELM can achieve a classification accuracy of 86.70% and 89.05% in the classification of nine species of birds respectively, and the recognition effect and stability of the M-SDE_EnELM model outperform other models.


Subject(s)
Algorithms
3.
Sci Rep ; 12(1): 8636, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606386

ABSTRACT

With the intensification of ecosystem damage, birds have become the symbolic species of the ecosystem. Ornithology with interdisciplinary technical research plays a great significance for protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs recognition. However, as the number of network layers increases in traditional CNN, semantic information gradually becomes richer and detailed information disappears. Secondly, the global information carried by the entire input may be lost in convolution, pooling, or other operations, and these problems will weaken the performance of classification. In order to solve such problems, based on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution neural network (EMSCNN) classification framework. The experiments compared the MSCNN and EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the recognition of 30 species of birds, our models effectively improved the classification effect with high stability and efficiency, indicating that the models have better generalization ability and are suitable for birdsongs species recognition. It provides methodological and technical scheme reference for bird classification research.


Subject(s)
Ecosystem , Neural Networks, Computer , Recognition, Psychology , Wavelet Analysis
4.
Sci Rep ; 12(1): 8799, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614118

ABSTRACT

Pine nuts are not only the important agent of pine reproduction and afforestation, but also the commonly consumed nut with high nutritive values. However, it is difficult to distinguish among pine nuts due to the morphological similarity among species. Therefore, it is important to improve the quality of pine nuts and solve the adulteration problem quickly and non-destructively. In this study, seven pine nuts (Pinus bungeana, Pinus yunnanensis, Pinus thunbergii, Pinus armandii, Pinus massoniana, Pinus elliottii and Pinus taiwanensis) were used as study species. 210 near-infrared (NIR) spectra were collected from the seven species of pine nuts, five machine learning methods (Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB)) were used to identify species of pine nuts. 303 images were used to collect morphological data to construct a classification model based on five convolutional neural network (CNN) models (VGG16, VGG19, Xception, InceptionV3 and ResNet50). The experimental results of NIR spectroscopy show the best classification model is MLP and the accuracy is closed to 0.99. Another experimental result of images shows the best classification model is InceptionV3 and the accuracy is closed to 0.964. Four important range of wavebands, 951-957 nm, 1,147-1,154 nm, 1,907-1,927 nm, 2,227-2,254 nm, were found to be highly related to the classification of pine nuts. This study shows that machine learning is effective for the classification of pine nuts, providing solutions and scientific methods for rapid, non-destructive and accurate classification of different species of pine nuts.


Subject(s)
Nuts , Pinus , Bayes Theorem , Machine Learning , Nuts/chemistry , Pinus/chemistry
5.
Sci Rep ; 11(1): 22282, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782675

ABSTRACT

Urbanization had a huge impact on the regional ecosystem net primary productivity (NPP). Although the urban heat island (UHI) caused by urbanization has been found to have a certain promoting effect on urban vegetation NPP, the factors on the impact still are not identified. In this study, the impact of urbanization on NPP was divided into direct impact (NPPdir) and indirect impact (NPPind), taking Kunming city as a case study area. Then, the spatial heterogeneity impact of land surface temperature (LST) on NPPind was analyzed based on the geographically weighted regression (GWR) model. The results indicated that NPP, LST, NPPdir and NPPind in 2001, 2009 and 2018 had significant spatial autocorrelation in Kunming based on spatial analytical model. LST had a positive impact on NPPind in the central area of Kunming. The positively correlation areas of LST on NPPind increased by 4.56%, and the NPPind caused by the UHI effect increased by an average of 4.423 gC m-2 from 2009 to 2018. GWR model can reveal significant spatial heterogeneity in the impacts of LST on NPPind. Overall, our findings indicated that LST has a certain role in promoting urban NPP.

SELECTION OF CITATIONS
SEARCH DETAIL
...