Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1015815, 2022.
Article in English | MEDLINE | ID: mdl-36262645

ABSTRACT

Cell wall invertase (CWI) is as an essential coordinator in carbohydrate partitioning and sink strength determination, thereby playing key roles in plant development. Emerging evidence revealed that the subtle regulation of CWI activity considerably depends on the post-translational mechanism by their inhibitors (INHs). In our previous research, two putative INHs (StInvInh1 and StInvInh3) were expected as targets of CWI in potato (Solanum tubersum), a model species of tuberous plants. Here, transcript analysis revealed that StInvInh1 showed an overall higher expression than StInhInh3 in all tested organs. Then, StInvInh1 was further selected to study. In accordance with this, the activity of StInvInh1 promoter increased with the development of leaves in plantlets but decreased with the development of microtubers in vitro and mainly appeared in vascular bundle. The recombinant protein StInvInh1 displayed inhibitory activities on the extracted CWI in vitro and StInvInh1 interacted with a CWI StcwINV2 in vivo by bimolecular fluorescence complementation. Furthermore, silencing StInvInh1 in potato dramatically increased the CWI activity without changing activities of vacuolar and cytoplasmic invertase, indicating that StInvInh1 functions as a typical INH of CWI. Releasing CWI activity in StInvInh1 RNA interference transgenic potato led to improvements in potato microtuber size in coordination with higher accumulations of dry matter in vitro. Taken together, these findings demonstrate that StInvInh1 encodes an INH of CWI and regulates the microtuber development process through fine-tuning apoplastic sucrose metabolism, which may provide new insights into tuber development.

2.
J Exp Bot ; 73(14): 4968-4980, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35511088

ABSTRACT

The accumulation of reducing sugars in cold-stored tubers, known as cold-induced sweetening (CIS), negatively affects potato processing quality. The starch to sugar interconversion pathways that are altered in cold-stored CIS tubers have been elucidated, but the mechanism that regulates them remains largely unknown. This study identified a CBF/DREB transcription factor (StTINY3) that enhances CIS resistance by both activating starch biosynthesis and repressing the hydrolysis of sucrose to reducing sugars in detached cold-stored tubers. Silencing StTINY3 in a CIS-resistant genotype decreased CIS resistance, while overexpressing StTINY3 in a CIS-sensitive genotype increased CIS resistance, and altering StTINY3 expression was associated with expression changes in starch resynthesis-related genes. We showed first that overexpressing StTINY3 inhibited sucrose hydrolysis by enhancing expression of the invertase inhibitor gene StInvInh2, and second that StTINY3 promoted starch resynthesis by up-regulating a large subunit of the ADP-glucose pyrophosphorylase gene StAGPaseL3, and the glucose-6-phosphate transporter gene StG6PT2. Using electrophoretic mobility shift assays, we revealed that StTINY3 is a nuclear-localized transcriptional activator that directly binds to the dehydration-responsive element/CRT cis-element in the promoters of StInvInh2 and StAGPaseL3. Taken together, these findings established that StTINY3 influences CIS resistance in cold-stored tubers by coordinately modulating the starch to sugar interconversion pathways and is a good target for improving potato processing quality.


Subject(s)
Solanum tuberosum , Carbohydrates , Cold Temperature , Hydrolysis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/metabolism , Solanum tuberosum/metabolism , Starch/metabolism , Sucrose/metabolism , Sugars/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Hortic Res ; 8(1): 82, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33790269

ABSTRACT

Potato invertase inhibitor (StInvInh2) positively regulates cold-induced sweetening (CIS) resistance by inhibiting the activity of vacuolar invertase. The distinct expression patterns of StInvInh2 have been thoroughly characterized in different potato genotypes, but the related CIS ability has not been characterized. The understanding of the regulatory mechanisms that control StInvInh2 transcription is unclear. In this study, we identified an ERF-VII transcription factor, StRAP2.3, that directly regulates StInvInh2 to positively modulate CIS resistance. Acting as a nuclear-localized transcriptional activator, StRAP2.3 directly binds the ACCGAC cis-element in the promoter region of StInvInh2, enabling promoter activity. Overexpression of StRAP2.3 in CIS-sensitive potato tubers induced StInvInh2 mRNA abundance and increased CIS resistance. In contrast, silencing StRAP2.3 in CIS-resistant potato tubers repressed the expression of StInvInh2 and decreased CIS resistance. We conclude that cold-responsive StInvInh2 is due to the binding of StRAP2.3 to the ACCGAC cis-element in the promoter region of StInvInh2. Overall, these findings indicate that StRAP2.3 directly regulates StInvInh2 to positively modulate CIS resistance, which may provide a strategy to improve the processing quality of potatoes.

4.
PeerJ ; 8: e8704, 2020.
Article in English | MEDLINE | ID: mdl-32266113

ABSTRACT

The winter oilseed ecotype is more tolerant to low temperature than the spring ecotype. Transcriptome and metabolome analyses of leaf samples of five spring Brassica napus L. (B. napus) ecotype lines and five winter B. napus ecotype lines treated at 4 °C and 28 °C were performed. A total of 25,460 differentially expressed genes (DEGs) of the spring oilseed ecotype and 28,512 DEGs of the winter oilseed ecotype were identified after cold stress; there were 41 differentially expressed metabolites (DEMs) in the spring and 47 in the winter oilseed ecotypes. Moreover, more than 46.2% DEGs were commonly detected in both ecotypes, and the extent of the changes were much more pronounced in the winter than spring ecotype. By contrast, only six DEMs were detected in both the spring and winter oilseed ecotypes. Eighty-one DEMs mainly belonged to primary metabolites, including amino acids, organic acids and sugars. The large number of specific genes and metabolites emphasizes the complex regulatory mechanisms involved in the cold stress response in oilseed rape. Furthermore, these data suggest that lipid, ABA, secondary metabolism, signal transduction and transcription factors may play distinct roles in the spring and winter ecotypes in response to cold stress. Differences in gene expression and metabolite levels after cold stress treatment may have contributed to the cold tolerance of the different oilseed ecotypes.

5.
Int J Mol Sci ; 21(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093101

ABSTRACT

Huanglongbing (HLB), also known as citrus greening, is the most notorious citrus disease worldwide. Candidatus Liberibacter asiaticus (CaLas) is a phloem-restricted bacterium associated with HLB. Because there is no mutant library available, the pathogenesis of CaLas is obscure. In this study, we employed tobacco mosaic virus (TMV) to express two mature secretion proteins CLIBASIA_03915 (m03915) and CLIBASIA_04250 (m04250) in Nicotiana benthamiana (N. benthamiana). Phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the two low molecular weight proteins, while no phloem necrosis was observed in the plants that expressed the control, green fluorescent protein (GFP). Additionally, no phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the null mutation of m03915 and frameshifting m04250. The subcellular localizations of m03915 and m04250 were determined by fusion with GFP using confocal microscopy. The subcellular localization of m03915 was found to be as free GFP without a nuclear localization sequence (NLS). However, m04250 did have an NLS. Yeast two-hybrid (Y2H) was carried out to probe the citrus proteins interacting with m03915 and m04250. Six citrus proteins were found to interact with m03915. The identified proteins were involved in the metabolism of compounds, transcription, response to abiotic stress, ubiquitin-mediated protein degradation, etc. The prey of m04250 was involved in the processing of specific pre-mRNAs. Identification of new virulence factors of CaLas will give insight into the pathogenesis of CaLas, and therefore, it will eventually help develop the HLB-resistant citrus.


Subject(s)
Bacterial Proteins/metabolism , Plant Diseases/microbiology , Rhizobiaceae/pathogenicity , Virulence Factors/metabolism , Bacterial Proteins/genetics , Citrus/metabolism , Host-Pathogen Interactions/genetics , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Phloem/genetics , Phloem/metabolism , Phloem/virology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Necrosis and Chlorosis/genetics , Plant Proteins/metabolism , Rhizobiaceae/genetics , Nicotiana/virology , Tobacco Mosaic Virus/metabolism , Virulence Factors/genetics
6.
Int J Mol Sci ; 20(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717281

ABSTRACT

Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.


Subject(s)
Nicotiana/metabolism , Nicotiana/microbiology , Rhizobiaceae/pathogenicity , Tobacco Mosaic Virus/metabolism , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Cell Death , Phenotype , Plant Leaves/cytology , Plant Leaves/microbiology , Subcellular Fractions/metabolism , Nicotiana/virology
7.
Sci Rep ; 6: 35751, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767195

ABSTRACT

Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.


Subject(s)
Nicotiana/metabolism , Nicotiana/virology , Plant Proteins/metabolism , RNA, Untranslated/biosynthesis , RNA, Viral/biosynthesis , RNA-Binding Proteins/metabolism , Viroids/physiology , Viroids/pathogenicity , DNA Methylation , DNA, Plant/genetics , DNA, Plant/metabolism , Green Fluorescent Proteins/genetics , Plant Diseases/genetics , Plant Diseases/virology , Plants, Genetically Modified , Promoter Regions, Genetic , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/virology , Nicotiana/genetics , Viroids/genetics , Virus Replication/genetics , Virus Replication/physiology
8.
J Virol ; 85(24): 13384-97, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21994448

ABSTRACT

RNA silencing provides protection against RNA viruses by targeting both the helper virus and its satellite RNA (satRNA). Virus-derived small interfering RNAs (vsiRNAs) bound with Argonaute (AGO) proteins are presumed participants in the silencing process. Here, we show that a vsiRNA targeted to virus RNAs triggers the host RNA-dependent RNA polymerase 6 (RDR6)-mediated degradation of viral RNAs. We confirmed that satRNA-derived small interfering RNAs (satsiRNAs) could be associated with different AGO proteins in planta. The most frequently cloned satsiRNA, satsiR-12, was predicted to imperfectly match to Cucumber mosaic virus (CMV) RNAs in the upstream area of the 3' untranslated region (3' UTR). Moreover, an artificial satsiR-12 (asatsiR-12) mediated cleavage of a green fluorescent protein (GFP) sensor construct harboring the satsiR-12 target site. asatsiR-12 also mediated reduction of viral RNAs in 2b-deficient CMV (CMVΔ2b)-infected Nicotiana benthamiana. The reduction was not observed in CMVΔ2b-infected RDR6i plants, in which RDR6 was silenced. Following infection with 2b-containing CMV, the reduction in viral RNAs was not observed in plants of either genotype, indicating that the asatsiR-12-mediated reduction of viral RNAs in the presence of RDR6 was inhibited by the 2b protein. Our results suggest that satsiR-12 targeting the 3' UTR of CMV RNAs triggered RDR6-dependent antiviral silencing. Competition experiments with wild-type CMV RNAs and anti-satsiR-12 mutant RNA1 in the presence of 2b and satRNA demonstrate the inhibitory effect of the 2b protein on the satsiR-12-related degradation of CMV RNAs, revealing a substantial suppressor function of the 2b protein in native CMV infection. Our data provide evidence for the important biological functions of satsiRNAs in homeostatic interactions among the host, virus, and satRNA in the final outcome of viral infection.


Subject(s)
3' Untranslated Regions , Cucumovirus/genetics , Cucumovirus/immunology , RNA, Satellite/genetics , RNA, Small Interfering/genetics , RNA, Viral/metabolism , RNA Stability , RNA, Satellite/metabolism , RNA, Small Interfering/metabolism , Nicotiana/virology
9.
Plant Cell ; 22(4): 1358-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20400679

ABSTRACT

Endogenous eukaryotic RNA-dependent RNA polymerases (RDRs) produce double-stranded RNA intermediates in diverse processes of small RNA synthesis in RNA silencing pathways. RDR6 is required in plants for posttranscriptional gene silencing induced by sense transgenes (S-PTGS) and has an important role in amplification of antiviral silencing. Whereas RDR1 is also involved in antiviral defense in plants, this does not necessarily proceed through triggering silencing. In this study, we show that Nicotiana benthamiana transformed with RDR1 from Nicotiana tabacum (Nt-RDR1 plants) exhibits hypersusceptibility to Plum pox potyvirus and other viruses, resembling RDR6-silenced (RDR6i) N. benthamiana. Analysis of transient induction of RNA silencing in N. benthamiana Nt-RDR1 and RDR6i plants revealed that Nt-RDR1 possesses silencing suppression activity. We found that Nt-RDR1 does not interfere with RDR6-dependent siRNA accumulation but turns out to suppress RDR6-dependent S-PTGS. Our results, together with previously published data, suggest that RDR1 might have a dual role, contributing, on one hand, to salicylic acid-mediated antiviral defense, and suppressing, on the other hand, the RDR6-mediated antiviral RNA silencing. We propose a scenario in which the natural loss-of-function variant of RDR1 in N. benthamiana may be the outcome of selective pressure to maintain a high RDR6-dependent antiviral defense, which would be required to face the hypersensitivity of this plant to a large number of viruses.


Subject(s)
Nicotiana/enzymology , Nicotiana/virology , Plant Diseases/genetics , RNA Interference , RNA-Dependent RNA Polymerase/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Plum Pox Virus , RNA, Plant/genetics , RNA, Small Interfering/genetics , RNA, Viral , RNA-Dependent RNA Polymerase/genetics , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...