Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phytomedicine ; 135: 156055, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39326140

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is defined as cardiac dysfunction involving changes in structure, function, and metabolism in the absence of coronary artery disease, which eventually developed into heart failure. There is still a lack of effective drugs for the treatment of DCM, while the ameliorative effects of traditional herbs on DCM have been commonly reported. Polydatin (PD) is a glucoside derivative of traditional herbs of resveratrol, which has been shown to ameliorate the pathological development of DCM. However, the cardioprotective effect and mechanism of PD in the improvement of myocardial injury are still unclear. AIM OF STUDY: This study aimed to investigate the cardio-protective role of PD on DCM and reveal the critical effect of Cav1 in PD' regulation of DCM. MATERIALS AND METHODS: The Cav1-/- and Cav1+/+mice and H9C2 cells were used to induce DCM models and then given PD treatment (150 mg/kg) or not. The cardiac functions of all mice were checked via echocardiography, and myocardial histological changes were measured by H&E, periodic acid-schiff (PAS) and Masson staining. The markers expression of heart fibrosis and inflammation, and hypertrophic factors were detected using western blotting. The NF-κB signaling activation was performed by confocal, immunohistochemical, Electrophoretic mobility shift assay (EMSA) and western blotting. RESULTS: Here, we found that PD significantly improved the cardiac function and injury of diabetic Cav1+/+ mice, and enhanced the expression of Cav1 in the cardiac tissues of diabetic Cav1+/+ mice and HG-induced H9C2 cells. Further investigation showed that when Cav1 was knocked down, PD no longer plays the cardioprotective effect and inhibits the NF-κB signaling pathway activation in HFD/stz-treated diabetic mice and HG-induced H9C2 cells. CONCLUSION: These results demonstrated that PD inhibited the hyperglycemia-induced myocardial injury and inflammatory fibrosis of DCM models in vivo and in vitro, and targeting Cav1 may provide a novel understanding the mechanism of the treatment of PD in DCM.

2.
Eur J Pharmacol ; 955: 175915, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37467841

ABSTRACT

Renal tubulointerstitial fibrosis (RIF), featured by epithelial-to-mesenchymal-transition (EMT) of renal tubular epithelial cells and collagen deposition in the renal interstitial region, is the main pathological change of diabetic nephropathy (DN). Fraxin, the main active component of Fraxinus rhynchophylla Hance with anti-inflammatory activity, has been demonstrated to ameliorate glomerulosclerosis. However, the regulatory role of Fraxin on diabetic RIF remains unclear. In this study, we investigated the renal protective benefits of Fraxin against diabetic RIF and elucidated its mechanisms. In vitro, Fraxin inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, improved cellular morphology, and subsequently reduced the extracellular matrix (ECM) production in high glucose (HG)-induced NRK-52E cells. In vivo, Fraxin effectively ameliorated renal function, inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, and reduced ECM deposition in renal tubule interstitium in db/db mice. Notably, Fraxin could directly bind to epidermal growth factor receptor (EGFR), which contributed to the inhibition of EGFR phosphorylation and counteracted the activation of c-Src/NF-κB pathway, eventually ameliorating RIF. Thus, Fraxin may be a potential drug candidate for treating DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice , Animals , NF-kappa B/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Kidney , Diabetic Nephropathies/pathology , ErbB Receptors , Cytokines/pharmacology , Fibrosis , Epithelial-Mesenchymal Transition
3.
Eur J Pharmacol ; 947: 175676, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37001580

ABSTRACT

PURPOSE: Ginsenoside Rb1 (GRb1), a dammarane-type triterpene saponin compound mainly distributed in ginseng (Panax ginseng), has been demonstrated to ameliorate cardiovascular diseases. However, it remains unclear whether GRb1 alleviates heart failure (HF) by maintaining cardiac energy metabolism balance. Therefore, this work aimed to investigate the cardiac benefits of GRb1 against cardiac energy deficit and explore its mechanism of action. METHODS AND RESULTS: Isoproterenol (ISO) induced HF Sprague-Dawley rats were administrated with GRb1 or fenofibrate for 6 weeks. ISO-induced primary neonatal rat cardiomyocytes (NRCMs) were used as the in vitro model. In vivo, GRb1 significantly improved the structural and metabolic disorder, as demonstrated by the restoration of cardiac function, inhibition of cardiac hypertrophy and fibrosis, and increased adenosine triphosphate (ATP) generation. In vitro, GRb1 effectively protected mitochondrial function and scavenged excessive reactive oxygen species. Moreover, in ISO-induced NRCMs, GRb1 significantly inhibited the abnormal upregulation of Fas-associated death domain (FADD), promoted transcriptional activation of peroxisome proliferator-activated receptor-alpha (PPARα), improved the aberrant expression of cardiac energy metabolism-related enzymes and cardiac fatty acid oxidation, and subsequently increased the synthesis of ATP. Noticeably, GRb1 could inhibit the increased binding between FADD and PPARα, which contributed to the activation of PPARα. Furthermore, GRb1 strengthened the thermal stabilization of FADD and might bind to FADD directly. CONCLUSIONS: Collectively, it's part of the in-depth mechanism of GRb1's cardio-protection that GRb1 could directly bind to FADD and counteract its negative role in the transcription of PPARα thus ameliorating cardiac energy derangement and HF.


Subject(s)
Ginsenosides , Heart Failure , Rats , Animals , PPAR alpha/metabolism , Rats, Sprague-Dawley , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Heart Failure/drug therapy , Heart Failure/metabolism , Adenosine Triphosphate , Fas-Associated Death Domain Protein/metabolism
4.
Bioorg Med Chem Lett ; 47: 128213, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34157389

ABSTRACT

In order to discover new anticancer agents, 25 novel 2,4-diamino-5-methyleneaminopyrimidine derivatives were designed and synthesized based on our previous work via a ring-opening strategy. Among them, compared with 5-FU, compound 7i exhibited 4.9-, 2.9-, 2.1-, and 3.0-fold improvement in inhibiting HCT116, HT-29, MCF-7, and HeLa cells proliferation with IC50 values of 4.93, 5.57, 8.84, and 14.16 µM, respectively. Moreover, further mechanistic studies indicated that compound 7i could concentration-dependently induce cell cycle arrest and apoptosis in HCT116 cells. These findings revealed that 2,4-diamino-5-methyleneaminopyrimidine scaffold has potential for further investigation to explore novel anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
5.
Eur J Med Chem ; 220: 113449, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33895499

ABSTRACT

By removing 5-methyl and 6-acetyl groups in our previously reported compound 3, we designed a series of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential tubulin polymerization inhibitors. Among them, compound 5e displayed low nanomolar antiproliferative efficacy on HeLa cells which was 166-fold higher than the lead analogue 3. Interestingly, 5e displayed significant selectivity in inhibiting cancer cells over HEK-293 (normal human embryonic kidney cells). In addition, 5e dose-dependently arrested HeLa in G2/M phase through the alterations of the expression levels of p-cdc2 and cyclin B1, and caused HeLa cells apoptosis by regulation of expressions of cleaved PARP. Further evidence demonstrated that 5e effectively inhibited tubulin polymerization and was 3-fold more powerful than positive control CA-4. Moreover, molecular docking analysis indicated that 5e overlapped well with CA-4 in the colchicine-binding site. These studies demonstrated that 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine skeleton might be used as the leading unit to develop novel tubulin polymerization inhibitors as potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyrimidines/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Polymerization/drug effects , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
6.
Bioorg Med Chem Lett ; 38: 127880, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33636303

ABSTRACT

Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 µM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Triazoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL