Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730227

ABSTRACT

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Subject(s)
Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
2.
Genome Res ; 33(10): 1690-1707, 2023 10.
Article in English | MEDLINE | ID: mdl-37884341

ABSTRACT

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Subject(s)
Metagenome , Microbiota , Sheep/genetics , Animals , Transcriptome , Rumen , Ruminants/genetics
3.
Genes (Basel) ; 14(6)2023 06 13.
Article in English | MEDLINE | ID: mdl-37372436

ABSTRACT

Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.


Subject(s)
DNA Copy Number Variations , Genomics , Sheep , Animals , DNA Copy Number Variations/genetics , Genotype , Group III Phospholipases A2/genetics , GTP Phosphohydrolases/genetics , Guanine Nucleotide Exchange Factors/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Quantitative Trait Loci , Sheep/genetics
4.
Front Genet ; 14: 1173017, 2023.
Article in English | MEDLINE | ID: mdl-37144124

ABSTRACT

Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. In this study, we focused on the worldwide goat breeds with outstanding traits and used whole-genome resequencing data in 361 samples from 68 breeds to detect genomic selection sweep regions. We identified 210-531 genomic regions with six phenotypic traits, respectively. Further gene annotation analysis revealed 332, 203, 164, 300, 205, and 145 candidate genes corresponding with dairy, wool, high prolificacy, poll, big ear, and white coat color traits. Some of these genes have been reported previously (e.g., KIT, KITLG, NBEA, RELL1, AHCY, and EDNRA), while we also discovered novel genes, such as STIM1, NRXN1, LEP, that may be associated with agronomic traits like poll and big ear morphology. Our study found a set of new genetic markers for genetic improvement in goats and provided novel insights into the genetic mechanisms of complex traits.

5.
Commun Biol ; 6(1): 159, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755107

ABSTRACT

The fat tail of sheep is an important organ that has evolved to adapt to extreme environments. However, the genetic mechanisms underlying the fat tail phenotype remain poorly understood. Here, we characterize transcriptome and lipidome profiles and morphological changes in 250 adipose tissues from two thin-tailed and three fat-tailed sheep populations in summer and winter. We implement whole-genome selective sweep tests to identify genetic variants related to fat-tails. We identify a set of functional genes that show differential expression in the tail fat of fat-tailed and thin-tailed sheep in summer and winter. These genes are significantly enriched in pathways, such as lipid metabolism, extracellular matrix (ECM) remodeling, molecular transport, and inflammatory response. In contrast to thin-tailed sheep, tail fat from fat-tailed sheep show slighter changes in adipocyte size, ECM remodeling, and lipid metabolism, and had less inflammation in response to seasonal changes, indicating improved homeostasis. Whole-genome selective sweep tests identify genes involved in preadipocyte commitment (e.g., BMP2, PDGFD) and terminal adipogenic differentiation (e.g., VEGFA), which could contribute to enhanced adipocyte hyperplasia. Altogether, we establish a model of regulatory networks regulating adipose homeostasis in sheep tails. These findings improve our understanding of how adipose homeostasis is maintained, in response to extreme environments in animals.


Subject(s)
Adipose Tissue , Multiomics , Sheep , Animals , Adipose Tissue/metabolism , Adipocytes , Transcriptome , Extreme Environments
6.
Genome Res ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948368

ABSTRACT

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

7.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34893856

ABSTRACT

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Subject(s)
Genome , Sheep, Domestic , Animals , Asia , Europe , Genetic Variation , Iran , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sheep/genetics , Sheep, Domestic/genetics
8.
Genomics ; 113(6): 3501-3511, 2021 11.
Article in English | MEDLINE | ID: mdl-34293474

ABSTRACT

Archaeological and genetic evidence show that sheep were originally domesticated in area around the North of Zagros mountains, North-west of Iran. The Persian plateau exhibits a variety of native sheep breeds with a common characteristic of coarse-wool production. Therefore, knowledge about the genetic structure and diversity of Iranian sheep and genetic connections with other sheep breeds is of great interest. To this end, we genotyped 154 samples from 11 sheep breeds distributed across Iran with the Ovine Infinium HD SNP 600 K BeadChip array, and analyzed this dataset combined with the retrieved data of 558 samples from 19 worldwide coarse-wool sheep breeds. The average genetic diversity ranged from 0.315 to 0.354, while the FST values ranged from 0.016 to 0.177 indicating a low differentiation of Iranian sheep. Analysis of molecular variance showed that 90.21 and 9.79% of the source of variation were related to differences within and between populations, respectively. Our results indicated that the coarse-wool sheep from Europe were clearly different from those of the Asia. Accordingly, the Asiatic mouflon was positioned between Asian and European countries. In addition, we found that the genetic background of Iranian sheep is present in sheep from China and Kyrgyzstan, as well as India. The revealed admixture patterns of the Iranian sheep and other coarse-wool sheep breeds probably resulted from the expansion of nomads and through the Silk Road trade network.


Subject(s)
Genetics, Population , Wool , Animals , Genetic Structures , Genetic Variation , Iran , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sheep/genetics
9.
Front Genet ; 12: 670582, 2021.
Article in English | MEDLINE | ID: mdl-34093663

ABSTRACT

Copy number variations (CNVs) are a major source of structural variation in mammalian genomes. Here, we characterized the genome-wide CNV in 2059 sheep from 67 populations all over the world using the Ovine Infinium HD (600K) SNP BeadChip. We tested their associations with distinct phenotypic traits by conducting multiple independent genome-wide tests. In total, we detected 7547 unique CNVs and 18,152 CNV events in 1217 non-redundant CNV regions (CNVRs), covering 245 Mb (∼10%) of the whole sheep genome. We identified seven CNVRs with frequencies correlating to geographical origins and 107 CNVRs overlapping 53 known quantitative trait loci (QTLs). Gene ontology and pathway enrichment analyses of CNV-overlapping genes revealed their common involvement in energy metabolism, endocrine regulation, nervous system development, cell proliferation, immune, and reproduction. For the phenotypic traits, we detected significantly associated (adjusted P < 0.05) CNVRs harboring functional candidate genes, such as SBNO2 for polycerate; PPP1R11 and GABBR1 for tail weight; AKT1 for supernumerary nipple; CSRP1, WNT7B, HMX1, and FGFR3 for ear size; and NOS3 and FILIP1 in Wadi sheep; SNRPD3, KHDRBS2, and SDCCAG3 in Hu sheep; NOS3, BMP1, and SLC19A1 in Icelandic; CDK2 in Finnsheep; MICA in Romanov; and REEP4 in Texel sheep for litter size. These CNVs and associated genes are important markers for molecular breeding of sheep and other livestock species.

10.
Life (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803851

ABSTRACT

Currently, the intraspecific taxonomy of snow sheep (Ovis nivicola) is controversial and needs to be specified using DNA molecular genetic markers. In our previous work using whole-genome single nucleotide polymorphism (SNP) analysis, we found that the population inhabiting Kharaulakh Ridge was genetically different from the other populations of Yakut subspecies to which it was usually referred. Here, our study was aimed at the clarification of taxonomic status of Kharaulakh snow sheep using mitochondrial cytochrome b gene. A total of 87 specimens from five different geographic locations of Yakut snow sheep as well as 20 specimens of other recognized subspecies were included in this study. We identified 19 haplotypes, two of which belonged to the population from Kharaulakh Ridge. Median-joining network and Bayesian tree analyses revealed that Kharaulakh population clustered separately from all the other Yakut snow sheep. The divergence time between Kharaulakh population and Yakut snow sheep was estimated as 0.48 ± 0.19 MYA. Thus, the study of the mtDNA cytb sequences confirmed the results of genome-wide SNP analysis. Taking into account the high degree of divergence of Kharaulakh snow sheep from other groups, identified by both nuclear and mitochondrial DNA markers, we propose to classify the Kharaulakh population as a separate subspecies.

11.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32941615

ABSTRACT

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Subject(s)
Adaptation, Biological/genetics , Disease Resistance/genetics , Genetic Introgression , Sheep/genetics , Animals , Biological Evolution , Climate Change , Genetic Variation , Phylogeography , Pneumonia/immunology , Sheep/immunology
12.
Article in English | MEDLINE | ID: mdl-33101438

ABSTRACT

Even in individuals without diabetes, the incidence of coronary heart disease (CHD) increases with the rise in fasting plasma glucose (FPG); however, the threshold of FPG for CHD in rural areas of China is unclear. We retrospectively examined 2,987 people. Coronary angiography records were used to determine the presence of CHD as well as its severity. Risk factors for CHD and the relationship between different levels of FPG and CHD were analyzed. After adjusting for age, hypertension, dyslipidemia, smoking, drinking, chronic kidney disease, and previous ischemic stroke, the incidence of CHD in nondiabetic women began to increase when FPG exceeded 5.2 mmol/L (odds ratio (OR) = 1.438, 95% confidence interval (CI) = 1.099-1.880, p=0.008), and the degree of coronary artery lesions also became more severe (OR = 1.406, 95% CI = 1.107-1.788, p=0.005). However, no such correlations were found in nondiabetic men. In conclusion, among the nondiabetic women in rural areas of northern Henan, both the incidence of CHD and the severity of lesions increased when FPG levels were greater than 5.2 mmol/L, while no significant correlation between FPG and CHD was observed in diabetes-free men.

13.
Curr Biol ; 30(20): 4085-4095.e6, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32822607

ABSTRACT

The domestication and subsequent global dispersal of livestock are crucial events in human history, but the migratory episodes during the history of livestock remain poorly documented [1-3]. Here, we first developed a set of 493 novel ovine SNPs of the male-specific region of Y chromosome (MSY) by genome mapping. We then conducted a comprehensive genomic analysis of Y chromosome, mitochondrial DNA, and whole-genome sequence variations in a large number of 595 rams representing 118 domestic populations across the world. We detected four different paternal lineages of domestic sheep and resolved, at the global level, their paternal origins and differentiation. In Northern European breeds, several of which have retained primitive traits (e.g., a small body size and short or thin tails), and fat-tailed sheep, we found an overrepresentation of MSY lineages y-HC and y-HB, respectively. Using an approximate Bayesian computation approach, we reconstruct the demographic expansions associated with the segregation of primitive and fat-tailed phenotypes. These results together with archaeological evidence and historical data suggested the first expansion of early domestic hair sheep and the later expansion of fat-tailed sheep occurred ∼11,800-9,000 years BP and ∼5,300-1,700 years BP, respectively. These findings provide important insights into the history of migration and pastoralism of sheep across the Old World, which was associated with different breeding goals during the Neolithic agricultural revolution.


Subject(s)
DNA, Mitochondrial/genetics , Genome/genetics , Polymorphism, Single Nucleotide/genetics , Sheep, Domestic/genetics , Y Chromosome/genetics , Animals , Breeding , Cell Lineage/genetics , Chromosome Mapping , Genetic Variation/genetics , Male , Mitochondria/genetics , Phenotype , Phylogeny , Sheep , Sheep, Domestic/classification , Whole Genome Sequencing
14.
Nat Commun ; 11(1): 2815, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499537

ABSTRACT

Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.


Subject(s)
Animal Husbandry/methods , Animals, Wild/genetics , Platelet-Derived Growth Factor/metabolism , Sheep, Domestic/genetics , Alleles , Animals , Breeding , Female , Gene Frequency , Genetic Variation , Genetics , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Mutation , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA , Sheep , Species Specificity , Whole Genome Sequencing
15.
Mol Biol Evol ; 36(2): 283-303, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30445533

ABSTRACT

Tibetan sheep are the most common and widespread domesticated animals on the Qinghai-Tibetan Plateau (QTP) and have played an essential role in the permanent human occupation of this high-altitude region. However, the precise timing, route, and process of sheep pastoralism in the QTP region remain poorly established, and little is known about the underlying genomic changes that occurred during the process. Here, we investigate the genomic variation in Tibetan sheep using whole-genome sequences, single nucleotide polymorphism arrays, mitochondrial DNA, and Y-chromosomal variants in 986 samples throughout their distribution range. We detect strong signatures of selection in genes involved in the hypoxia and ultraviolet signaling pathways (e.g., HIF-1 pathway and HBB and MITF genes) and in genes associated with morphological traits such as horn size and shape (e.g., RXFP2). We identify clear signals of argali (Ovis ammon) introgression into sympatric Tibetan sheep, covering 5.23-5.79% of their genomes. The introgressed genomic regions are enriched in genes related to oxygen transportation system, sensory perception, and morphological phenotypes, in particular the genes HBB and RXFP2 with strong signs of adaptive introgression. The spatial distribution of genomic diversity and demographic reconstruction of the history of Tibetan sheep show a stepwise pattern of colonization with their initial spread onto the QTP from its northeastern part ∼3,100 years ago, followed by further southwest expansion to the central QTP ∼1,300 years ago. Together with archeological evidence, the date and route reveal the history of human expansions on the QTP by the Tang-Bo Ancient Road during the late Holocene. Our findings contribute to a depth understanding of early pastoralism and the local adaptation of Tibetan sheep as well as the late-Holocene human occupation of the QTP.


Subject(s)
Acclimatization/genetics , Genome , Human Migration , Hybridization, Genetic , Sheep/genetics , Altitude , Animals , Ecotype , Humans , Selection, Genetic , Tibet
16.
Sci Rep ; 8(1): 11677, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076315

ABSTRACT

Domestic animals play a key role in human survival and the development of civilization. However, the genetic resources of domestic animals are facing an alarming rate of erosion due to socioeconomic changes, economic globalization and financial constraints. In this study, through genome-wide SNP analysis, we estimated the heterozygosity, inbreeding coefficient, effective population size, and runs of homozygosity to identify the breeds facing the risk of extinction for sheep and cattle across the world. In particular, we quantified the contribution of 97 sheep breeds and 53 cattle breeds to genomic diversity (within-breed, between-breed and total) and prioritized the breeds for conservation. Additionally, we compared the average values of genomic diversity between breeds from regions (or countries) in different economic categories (underdeveloped, developing and developed), and found that breeds in developed regions exhibit significantly higher levels of total genomic diversity than those in underdeveloped and developing regions. Altogether, our results suggested that conservation priority should be given to breeds in developed regions to secure the future genomic diversity hotspots of domestic animal resources.


Subject(s)
Animals, Domestic/genetics , Genetic Variation , Genome , Animals , Cattle , Conservation of Natural Resources , Homozygote , Inbreeding , Population Density , Regression Analysis , Sheep/genetics
17.
Genome Biol Evol ; 10(5): 1282-1297, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29790980

ABSTRACT

Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.


Subject(s)
Genetic Drift , Genetic Variation , Selection, Genetic , Sheep/genetics , X Chromosome/genetics , Animals , Animals, Wild , Chromosomes, Mammalian/genetics , Female , Genes, X-Linked/genetics , Genetics, Population , Genomics , Humans , Male , Molecular Sequence Data , Polymorphism, Single Nucleotide , Pseudoautosomal Regions , Sheep, Domestic/genetics
18.
Mol Biol Evol ; 34(9): 2380-2395, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28645168

ABSTRACT

China has a rich resource of native sheep (Ovis aries) breeds associated with historical movements of several nomadic societies. However, the history of sheep and the associated nomadic societies in ancient China remains poorly understood. Here, we studied the genomic diversity of Chinese sheep using genome-wide SNPs, mitochondrial and Y-chromosomal variations in > 1,000 modern samples. Population genomic analyses combined with archeological records and historical ethnic demographics data revealed genetic signatures of the origins, secondary expansions and admixtures, of Chinese sheep thereby revealing the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Originating from the Mongolian Plateau ∼5,000‒5,700 years ago, Chinese sheep were inferred to spread in the upper and middle reaches of the Yellow River ∼3,000‒5,000 years ago following the expansions of the Di-Qiang people. Afterwards, sheep were then inferred to reach the Qinghai-Tibetan and Yunnan-Kweichow plateaus ∼2,000‒2,600 years ago by following the north-to-southwest routes of the Di-Qiang migration. We also unveiled two subsequent waves of migrations of fat-tailed sheep into northern China, which were largely commensurate with the migrations of ancestors of Hui Muslims eastward and Mongols southward during the 12th‒13th centuries. Furthermore, we revealed signs of argali introgression into domestic sheep, extensive historical mixtures among domestic populations and strong artificial selection for tail type and other traits, reflecting various breeding strategies by nomadic societies in ancient China.


Subject(s)
Phylogeography/methods , Sheep, Domestic/genetics , Animals , Animals, Domestic/genetics , Asian People/genetics , Breeding , China , DNA, Mitochondrial/genetics , Asia, Eastern , Genetic Variation/genetics , Genome/genetics , Genomics/methods , Haplotypes , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , Transients and Migrants , Y Chromosome/genetics
19.
Mol Biol Evol ; 33(10): 2576-92, 2016 10.
Article in English | MEDLINE | ID: mdl-27401233

ABSTRACT

Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.


Subject(s)
Acclimatization/genetics , Adaptation, Physiological/genetics , Sheep/genetics , Animals , Breeding , Climate , Environment , Extreme Environments , Genome , Genomics , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Selection, Genetic , Sequence Analysis, DNA/methods
20.
Exp Ther Med ; 12(6): 3877-3884, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28105120

ABSTRACT

Curcumin is a natural polyphenol with powerful antioxidant and anti-inflammatory properties. The present study evaluated the protective effect of curcumin on myocardial injury in rats as well as the mechanisms underlying these effects, and examined the expression of nuclear factor-κB (NF-κB), peroxisome proliferator-activated receptor-γ (PPAR-γ) and B-cell leukemia/lymphoma-2 (Bcl-2) following myocardial infarction. A rat model of myocardial infarction was successfully established. Hematoxylin and eosin staining showed cellular atrophy and hyperchromatic cytoplasm in the myocardial infarction area. The myocardial cells displayed lysis and breakage of cardiac muscle fibers, karyopyknosis and karyorrhexis associated with infiltration of inflammatory cells and proliferation of fibrous tissue. Curcumin treatment at a dosage of 150 mg/kg/body weight resulted in an increase in surviving cells, fewer apoptotic cells, decreased proliferation of fibrous tissue and reduced infiltration of inflammatory cells, though necrosis was still present compared with the rats without curcumin treatment. The immunohistochemical assay demonstrated that curcumin treatment inhibited the expression of NF-κB, but increased the expression of PPAR-γ. The results of the reverse transcription-polymerase chain reaction indicated that curcumin treatment significantly increased the mRNA expression levels of Bcl-2 (P<0.01). Therefore, curcumin antagonizes cardiomyocyte apoptosis and inhibits inflammatory cell infiltration following myocardial infarction, which may be associated with its inhibitory effects on the expression of NF-κB, and activating effects on the expression of PPAR-γ and Bcl-2 in myocardial cells. Curcumin may be useful in clinical practice for saving more living heart muscle in the area of myocardial infarction and improving cardiac function following the elective opening of obstructed coronary arteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...