Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 282: 127649, 2024 May.
Article in English | MEDLINE | ID: mdl-38402727

ABSTRACT

Bacterial wilt is the leading disease of sesame and alters the bacterial community composition, function, and metabolism of sesame rhizosphere soil. However, its pattern of change is unclear. Here, the purpose of this study was to investigate how these communities respond to three differing severities of bacterial wilt in mature continuously cropped sesame plants by metagenomic and metabolomic techniques, namely, absence (WH), moderate (WD5), and severe (WD9) wilt. The results indicated that bacterial wilt could significantly change the bacterial community structure in the rhizosphere soil of continuously cropped sesame plants. The biomarker species with significant differences will also change with increasing disease severity. In particular, the gene expression levels of Ralstonia solanacearum in the WD9 and WD5 treatments increased by 25.29% and 33.61%, respectively, compared to those in the WH treatment (4.35 log10 copies g-1). The occurrence of bacterial wilt significantly altered the functions of the bacterial community in rhizosphere soil. KEEG and CAZy functional annotations revealed that the number of significantly different functions in WH was greater than that in WD5 and WD9. Bacterial wilt significantly affected the relative content of metabolites, especially acids, in the rhizosphere soil, and compared with those in the rhizosphere soil from WH, 10 acids (including S-adenosylmethionine, N-acetylleucine, and desaminotyrosine, etc.) in the rhizosphere soil from WD5 or WD9 significantly increased. In comparison, the changes in the other 10 acids (including hypotaurine, erucic acid, and 6-hydroxynicotinic acid, etc.) were reversed. The occurrence of bacterial wilt also significantly inhibited metabolic pathways such as ABC transporter and amino acid biosynthesis pathways in rhizosphere soil and had a significant impact on two key enzymes (1.1.1.11 and 2.6.1.44). In conclusion, sesame bacterial wilt significantly alters the rhizosphere soil bacterial community structure, function, and metabolites. This study enhances the understanding of sesame bacterial wilt mechanisms and lays the groundwork for future prevention and control strategies against this disease.


Subject(s)
Sesamum , Soil , Soil/chemistry , Rhizosphere , Soil Microbiology , Biodiversity , Bacteria/genetics
2.
Chem Commun (Camb) ; 58(96): 13341-13344, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36373827

ABSTRACT

The non-solvent induced phase separation method is utilized to produce a free-standing electrode with good conductivity retention during 1000 bending/stretching cycles. The as-prepared electrode has been fabricated for an integrated device consisting of an ethanol fuel cell, a supercapacitor and a motion sensor. This method for fabricating free-standing electronics reveals a cost-effective approach towards wearable devices.


Subject(s)
Electronics , Wearable Electronic Devices , Electrodes , Motion
3.
ACS Sens ; 7(10): 3067-3076, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36173279

ABSTRACT

Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.


Subject(s)
2-Propanol , Wearable Electronic Devices , Ethanol , Methanol/chemistry , Oxidation-Reduction
4.
Anal Chem ; 94(4): 2333-2340, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35043635

ABSTRACT

Self-powered sensors have attracted great attention in the field of analysis owing to the necessity of power resources for the routine use of sensor devices. However, it is still challenging to construct wearable self-powered sensors in a simple and efficient way. Herein, wearable self-powered textile smart sensors based on advanced bifunctional polyaniline/reduced graphene oxide (PANI/RGO) films have been successfully developed for remote real-time detection of vitamin C. Specifically, a pH-assisted oil/water (O/W) self-assembly strategy was proposed to boost the O/W self-assembled PANI/RGO films via proton regulation. The as-obtained PANI/RGO films could be directly loaded on the textile substrate, with good capacitive and biosensing performance due to the multifunctionality of PANI and RGO, respectively. Moreover, both wearable power supply devices and wearable biosensors based on PANI/RGO films possess good electrochemical performance, which paves the way for the actual application of self-powered nutrition monitoring. Significantly, obvious signals have been obtained in the detection of vitamin C beverages, exhibiting promising application values in daily nutrition track necessities. Prospectively, this study would provide an effective and simple strategy for integrating wearable self-powered sensors, and the developed smart sensing system is an ideal choice for the portable detection of nutrition.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Textiles
5.
Mikrochim Acta ; 189(1): 46, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985727

ABSTRACT

Wearable film-based smart biosensors have been developed for real-time biomolecules detection. Particularly, interfacial co-assembly of reduced graphene oxide-prussian blue (PB-RGO) film through electrostatic interaction has been systematically studied by controllable pH values, achieving optimal PB-RGO nanofilms at oil/water (O/W) phase interface driven by minimization of interfacial free energy for wearable biosensors. As a result, as-prepared wearable biosensors of PB-RGO film could be easily woven into fabrics, exhibiting excellent glucose sensing performance in amperometric detection with a sensitivity of 27.78 µA mM-1 cm-2 and a detection limit of 7.94 µM, as well as impressive mechanical robustness of continuously undergoing thousands of bending or twist. Moreover, integrated wearable smartsensing system could realize remotely real-time detection of biomarkers in actual samples of beverages or human sweat via cellphones. Prospectively, interfacial co-assembly engineering driven by pH-induced electrostatic interaction would provide a simple and efficient approach for acquiring functional graphene composites films, and further fabricate wearable smartsensing devices in health monitoring fields.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Ferrocyanides/chemistry , Glucose/analysis , Graphite/chemistry , Wearable Electronic Devices , Delivery of Health Care , Humans , Particle Size , Surface Properties
6.
ACS Sens ; 6(12): 4526-4534, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34910879

ABSTRACT

A wearable self-powered sensor is a promising frontier in recent flexible electronic devices. In this work, a wearable fuel cell (FC)-type self-powering motion smartsensor has been fabricated, particularly in choosing methanol vapor as a target fuel for the first time. The core-shell structure of Pt@Au/N-rGO and the porous carbon network act as methanol oxidation and oxygen reduction reaction catalysts, with a highly conductive alkaline hydrogel as a solid-state electrolyte. As a result, a wearable FC for a self-powered sensing system demonstrates excellent sensing performance toward 2-20% (v/v) methanol vapor with a maximum power density of 2.26 µW cm-1 and good mechanical behaviors during the bending or twisting process. Significantly, this wearable FC device could power strain sensors of human motion, and real-time signals can be easily remotely detected via a cellphone. With attractive biocompatibility and self-powering performance, wearable FCs for a self-powering system would provide new opportunities for next-generation flexible smartsensing electronics and initiate a developed self-powering platform in future practical application of wearable smart monitoring.


Subject(s)
Methanol , Wearable Electronic Devices , Electric Conductivity , Humans , Hydrogels , Motion
7.
ACS Appl Mater Interfaces ; 13(25): 29780-29787, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34128631

ABSTRACT

To meet the increasing demand for wearable sensing devices, flexible supercapacitors (SCs) as energy storage devices play significant roles in powering sensors/biosensors for healthcare monitoring. Because of its high conductivity and remarkable specific capacitance in SCs, molybdenum nitride (MoN) has been widely used. Herein, a flexible helical structure of MoN modified on nitrogen-doped carbon cloth (CC@CN@MoN) has been prepared by a simple nitride process, delivering an ultralong cycle life of 10,000 cycles and high areal capacitance of 467.6 mF cm-2 as SCs. Moreover, the as-fabricated flexible all-solid-state asymmetrical SCs (ASCs) of CC@CN@MoN//CC@NiCo2O4 demonstrated outstanding electrochemical behavior after 10,000 cycles and over 90% retention, and the value of areal capacitance could reach 90.8 mF cm-2 at 10 mA cm-2. Integrated with solar energy, ASCs could be used as a self-powered energy system for strain sensors in detecting human movement, and finger movements could be further real-time monitored remotely via a smartphone. Prospectively, wearable helical MoN solid-state SCs for self-powered strain smartsensors would inspire the development of structured materials in the application of energy storage, portable self-powering, and strain or chemical/biochemical smartsensors.


Subject(s)
Molybdenum/chemistry , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Electrical Equipment and Supplies , Equipment Design , Humans , Pliability , Smartphone
8.
ACS Appl Mater Interfaces ; 12(19): 21779-21787, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32323969

ABSTRACT

Wearable energy storage and flexible body biomolecule detection are two key factors for real-time monitoring of human health in a practical environment. It would be rather exciting if one wearable system could be used for carrying out both energy storage and biomolecule detection. Herein, carbon fiber-based NiCoO2 nanosheets coated with nitrogen-doped carbon (CF@NiCoO2@N-C) have been prepared via a simple electrochemical deposition method. Interestingly, being a dual-functional active material, CF@NiCoO2@N-C exhibits excellent behaviors as a supercapacitor and prominent electrocatalytic properties, which can be applied for enzyme-free biosensor. It exhibits outstanding energy storage, high capacitive stability (94% capacitive retention after 10,000 cycles), and pre-eminent flexible ability (95% capacitive retention after 10,000 bending cycles), as well as high sensitivity for enzyme-free glucose detection (592  µA mM-1). Moreover, the CF@NiCoO2@N-C-based wearable supercapacitors would be used as self-powered energy systems for enzyme-free biosensors. Integrating with bluetooth, we have successfully developed a wearable self-powered enzyme-free smartsensor, remotely controlled using a smartphone for health monitoring in a practical environment. From this prospective study, it was found that the design of wearable self-powered smartsensors, demonstrating energy storage and enzyme-free biosensing in one system, provides a promising device for detecting body biomolecules, which has the potential to be implemented in the artificial intelligent fields.


Subject(s)
Biosensing Techniques/instrumentation , Carbon Fiber/chemistry , Nanostructures/chemistry , Solar Energy , Textiles , Wearable Electronic Devices , Biosensing Techniques/methods , Cobalt/chemistry , Electric Capacitance , Electrodes , Glucose/analysis , Humans , Nickel/chemistry , Nitrogen/chemistry , Smartphone
9.
Biosens Bioelectron ; 144: 111637, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31494509

ABSTRACT

The wearable smart detection of body biomolecules and biomarkers is being of significance in the practical fields. Hydrogen peroxide (H2O2) is a product of some enzyme-catalyzed biomolecular reactions. The detection of H2O2 could reflect the concentration information of the enzyme reaction biomolecule substrate such as glucose. A high-performance berlin green (BG) carbon ink for monitoring H2O2 was prepared in this work. And we have successfully developed the wearable smartsensors for detecting H2O2 and glucose based on one-step fabricated BG arrays by screen-printing technology. Comparing with other detection methods, these sensors are wearable, movable, flexible and biocompatible for monitoring biomolecules. As a result, the sensors exhibited good sensitivity, specificity, stability and reproductivity towards H2O2 and glucose. Additionally, there also received stable response after near one hundred times stretching and thousands of bending. Moreover, the wearable sensors could be easily remotely controlled by a smart phone, when integrated with wireless into the device. In prospective studies, the one-step fabricated wearable smartsensors is of great significance in developing a straightforward, highly-efficient and low-cost method for actual detection of biomolecules reflecting body health status, and would potentially be applied in the artificial intelligence (AI) fields.


Subject(s)
Biomarkers/chemistry , Biosensing Techniques , Wearable Electronic Devices , Coloring Agents/chemistry , Glucose/chemistry , Glucose/isolation & purification , Hydrogen Peroxide/chemistry , Printing, Three-Dimensional , Prospective Studies
10.
Connect Tissue Res ; 58(6): 573-585, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28102712

ABSTRACT

Bone morphogenetic proteins (BMPs) play roles in promoting cell anabolism, especially in extracellular matrix production. The difference between BMP members in their capacity to modulate intervertebral disc cell activity is yet to be defined. BMP-7/OP-1 has been shown to retard disc degeneration. We compared the activity of BMP-7 with that of BMP-2 on nucleus pulposus (NP) cell phenotype and function, and investigated how they differentially affect the gene expression profiles of signaling cascade components in human NP cells under degenerative states. We found that while both BMP-2 and BMP-7 enhanced matrix production of bovine NP cells, BMP-7 is more potent than BMP-2 at various dosages (50-800 ng/ml). BMP-7 exerted a relatively stronger stimulation on sulfated glycosaminoglycan production and proliferation in human NP cells. Degenerated NP cells showed an overall weaker response to the BMPs than non-degenerated cells, and were more sensitive to BMP-7 than BMP-2 stimulation. Compared to BMP-2, BMP-7 not only induced the gene expression of canonical BMP components, but also evoked changes in MAPKs as well as CREB1 and EP300 gene expression in degenerated NP cells, suggesting potential activation of the cAMP dependent protein kinase related pathways. In contrast to BMP-2, BMP-7 concomitantly inhibited the expression of profibrotic genes. We propose that BMP-2 and BMP-7, and likely other BMPs, may operate multifaceted but discrete molecular machineries that give rise to their different capacity in regulating NP cell phenotype. Further investigations into such differential capacity may possibly derive alternative cues important for IVD repair or engineering.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 7/metabolism , Nucleus Pulposus/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
11.
Front Plant Sci ; 6: 747, 2015.
Article in English | MEDLINE | ID: mdl-26442060

ABSTRACT

To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15. The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C SS/C AA) as well as F v/F m increased. These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C SS/C AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C SS /C AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

12.
Crit Rev Eukaryot Gene Expr ; 25(1): 13-21, 2015.
Article in English | MEDLINE | ID: mdl-25955814

ABSTRACT

Degenerated intervertebral discs (d-IVDs) contribute to low back pain (LBP) and are highly common. While some d-IVDs cause discogenic LBP, others are pain-free. Understanding the differences in pathophysiology between painful and pain-free intervertebral disc degeneration (IDD), especially the pathogenic signaling involved in the regulation of painful d-IVDs, is vital for achieving satisfactory effects in clinical treatment. In this review, we revisit recent findings on the detection of inflammatory factors in d-IVDs and summarize the differences between d-IVDs that are painful and those that are pain-free. We postulate that persistent inflammation and innervation are the key factors distinguishing those that are symptomatic and those that are not. This highlights the necessity to use painful, rather than pain-free, degenerated discs in the mechanistic study of disc degeneration and in the development of regenerative approaches, to avoid false positive/negative outcomes. Based on previous molecular d-IVD studies, we also postulate the signaling events from disc overload/ injury to discogenic pain. Although these proposed events are supported by experimental findings, many details about how they are interconnected are not addressed and therefore require experimental investigation.


Subject(s)
Inflammation/physiopathology , Intervertebral Disc Degeneration/physiopathology , Low Back Pain/physiopathology , Humans , Inflammation/complications , Inflammation/therapy , Intervertebral Disc/innervation , Intervertebral Disc/physiopathology , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/therapy , Low Back Pain/complications , Low Back Pain/therapy , Regeneration
13.
Cell Discov ; 1: 15037, 2015.
Article in English | MEDLINE | ID: mdl-27462434

ABSTRACT

SPOUT proteins constitute one class of methyltransferases, which so far are found to exert activity mainly towards RNAs. Previously, yeast Sfm1 was predicted to contain a SPOUT domain but can methylate ribosomal protein S3. Here we report the crystal structure of Sfm1, which comprises of a typical SPOUT domain and a small C-terminal domain. The active site is similar to that of protein arginine methyltransferases but different from that of RNA methyltransferases. In addition, Sfm1 exhibits a negatively charged surface surrounding the active site unsuitable for RNA binding. Our biochemical data show that Sfm1 exists as a monomer and has high activity towards ribosomal protein S3 but no activity towards RNA. It can specifically catalyze the methylation of Arg146 of S3 and the C-terminal domain is critical for substrate binding and activity. These results together provide the structural basis for Sfm1 functioning as a PRMT for ribosomal protein S3.

14.
PLoS One ; 9(8): e105088, 2014.
Article in English | MEDLINE | ID: mdl-25133819

ABSTRACT

Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9%) was greater than shading (decreased cellulose content by 0.7%-5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.


Subject(s)
Cell Wall/metabolism , Cellulose/biosynthesis , Cotton Fiber , Gossypium/metabolism , Gossypium/physiology , Light , Glucosyltransferases/metabolism , Gossypium/enzymology , Temperature , Time Factors
15.
Stem Cells ; 32(8): 2164-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24737495

ABSTRACT

Intervertebral disc degeneration is associated with back pain and radiculopathy which, being a leading cause of disability, seriously affects the quality of life and presents a hefty burden to society. There is no effective intervention for the disease and the etiology remains unclear. Here, we show that disc degeneration exhibits features of fibrosis in humans and confirmed this in a puncture-induced disc degeneration (PDD) model in rabbit. Implantation of bone marrow-derived mesenchymal stem cells (MSCs) to PDD discs can inhibit fibrosis in the nucleus pulposus with effective preservation of mechanical properties and overall spinal function. We showed that the presence of MSCs can suppress abnormal deposition of collagen I in the nucleus pulposus, modulating profibrotic mediators MMP12 and HSP47, thus reducing collagen aggregation and maintaining proper fibrillar properties and function. As collagen fibrils can regulate progenitor cell activities, our finding provides new insight to the limited self-repair capability of the intervertebral disc and importantly the mechanism by which MSCs may potentiate tissue regeneration through regulating collagen fibrillogenesis in the context of fibrotic diseases.


Subject(s)
Intervertebral Disc Degeneration/therapy , Intervertebral Disc/pathology , Mesenchymal Stem Cell Transplantation/methods , Animals , Compressive Strength , Disease Models, Animal , Fibrosis/therapy , Humans , Immunohistochemistry , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/pathology , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Rabbits , Range of Motion, Articular , Transcriptome
16.
Stem Cells ; 32(6): 1408-19, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24578244

ABSTRACT

The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo.


Subject(s)
Biomarkers/metabolism , Cell Membrane/metabolism , Mesenchymal Stem Cells/metabolism , Cell Separation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mesenchymal Stem Cells/cytology
17.
PLoS One ; 9(2): e89476, 2014.
Article in English | MEDLINE | ID: mdl-24586807

ABSTRACT

Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.


Subject(s)
Cellulose/metabolism , Cotton Fiber , Flowers/growth & development , Fruit/metabolism , Glucosyltransferases/metabolism , Gossypium/growth & development , Sucrose/metabolism , beta-Fructofuranosidase/metabolism , Carbohydrate Metabolism , Flowers/metabolism , Gossypium/anatomy & histology , Gossypium/metabolism , Organ Size
18.
Rheumatology (Oxford) ; 53(4): 600-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24049099

ABSTRACT

Intervertebral disc degeneration usually starts from the inner nucleus pulposus (NP). The majority of previous NP-related studies assessed the outcome by the expression of chondrogenic markers since NP cells are chondrocyte like. However, NP cells are unique from chondrocytes and such assessments may be inappropriate. Very recently, several investigators published their findings about the transcriptional differences between NP cells and other related cell types on a genomic scale. In this review we discuss these recent findings and summarize the molecules that may be utilized as NP-specific markers to distinguish normal NP cells from several cell types and as markers that indicate its degeneration. We will revisit markers that distinguish NP cells from the outer surrounding annulus fibrosus (AF) cells and articular chondrocytes so as to facilitate authentic NP cell engineering from stem cells. Our review indicated that N-cadherin and keratin 19 have the potential to serve as common NP markers, as they distinguish healthy NP cells from AF cells, articular cartilage cells and degenerated NP cells.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Keratin-19/metabolism , Biomarkers , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Humans , Intervertebral Disc/cytology , Mesenchymal Stem Cells/metabolism
19.
Cytotherapy ; 15(3): 323-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23312450

ABSTRACT

Bone marrow-derived mesenchymal stem cells (BM-MSCs) hold great promise for tissue regeneration. With increasing numbers of clinical trials, the safety of BM-MSCs attracts great interest. Previously, we determined that rat BM-MSCs possessed spontaneous calcification without osteogenic induction after continuous culture. However, it is unclear whether BM-MSCs from other species share this characteristic. In this study, spontaneous calcification of BM-MSCs from rat, goat, and human specimens was investigated in vitro. BM-MSCs were cultured in complete medium, and calcification was determined by morphologic observation and alizarin red staining. It was demonstrated that rat BM-MSCs possessed a typically spontaneous calcification, whereas goat and human BM-MSCs under the same system proliferated significantly but did not calcify spontaneously. The significant species variation in spontaneous calcification of BM-MSCs described in this study provides useful information regarding evaluation of numerous BM-MSC-based approaches for bone regeneration and the safety of BM-MSCs.


Subject(s)
Bone Marrow Cells/pathology , Bone Regeneration , Calcinosis , Mesenchymal Stem Cells/pathology , Animals , Bone Marrow Cells/metabolism , Goats/physiology , Humans , Mesenchymal Stem Cells/metabolism , Rats , Species Specificity
20.
Curr Stem Cell Res Ther ; 7(6): 389-99, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22934544

ABSTRACT

The past decade has witnessed numerous publications on mesenchymal stem cells (MSC), which have great potential in regenerative medicine. MSC from various types of origins exhibit different characteristics, which may relate to the maintenance role of MSC in that specific source. Reports have emerged that among the most widely investigated sources, umbilical cord (UC) or umbilical cord blood (UCB) derived MSC throw advantages over bone marrow (BM) derived MSC due to their close to fetal origin. Here the methodologies used to separate MSC from UC or UCB, and the intrinsic properties, including proliferation capacity, multipotency, cytokine profile, cell surface protein expression and gene expression, between UC, UCB and BM derived MSC, are discussed in details, though may not in a full picture, for the first time.


Subject(s)
Bone Marrow/physiology , Fetal Blood/physiology , Mesenchymal Stem Cells/physiology , Regenerative Medicine/methods , Umbilical Cord/physiology , Cell Culture Techniques , Cell Separation , Cells, Cultured , Fetal Blood/cytology , Humans , Organogenesis/physiology , Regenerative Medicine/trends , Stem Cell Niche/physiology , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...