Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(29): e202400001, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38501217

ABSTRACT

Free radicals are increasingly recognized as active intermediate reactive species that can participate in various redox processes, significantly influencing the mechanistic pathways of reactions. Numerous researchers have investigated the generation of one or more distinct photogenerated radicals, proposing various hypotheses to explain the reaction mechanisms. Notably, recent research has demonstrated the emergence of photogenerated radicals in innovative processes, including organic chemical reactions and the photocatalytic dissolution of precious metals. To harness the potential of these free radicals more effectively, it is imperative to consolidate and analyze the processes and action modes of these photogenerated radicals. This conceptual paper delves into the latest advancements in understanding the mechanics of photogenerated radicals.

2.
Angew Chem Int Ed Engl ; 62(45): e202312734, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37735738

ABSTRACT

Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1 /TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki-Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2 , CeO2 , and WO3 . The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.

3.
Front Chem ; 11: 1124303, 2023.
Article in English | MEDLINE | ID: mdl-36874073

ABSTRACT

The influence of metal ions, the state of metal salt, and ligands on the sterilization ability of (Metalorganic frameworks) MOFs to effectively achieve sterilization has been investigated in this study. Initially, the MOFs were synthesized by elements of Zn, Ag, and Cd for the same periodic and main group of Cu. This illustrated that the atomic structure of Cu was more beneficial for coordinating with ligands. To further induce the maximum amount of Cu2+ ions in the Cu-MOFs to achieve the highest sterilization, various Cu-MOFs synthesized by the different valences of Cu, various states of copper salts, and organic ligands were performed, respectively. The results demonstrated that Cu-MOFs synthesized by 3, 5-dimethyl-1, 2, 4-triazole and tetrakis (acetonitrile) copper(I) tetrafluoroborate presented the largest inhibition-zone diameter of 40.17 mm towards Staphylococcus Aureus (S. aureus) under dark conditions. The proposed mechanism of Cu (Ⅱ) in MOFs could significantly cause multiple toxic effects, such as the generation of reactive oxygen species, and lipid peroxidation in S. aureus cells, when the bacteria was anchored by the Cu-MOFs via electrostatic interaction. Finally, the broad antimicrobial properties of Cu-MOFs against Escherichia coli (E. coli), Acinetobacter baumannii (A. baumannii), and S. aureus were demonstrated. In conclusion, the Cu-3, 5-dimethyl-1, 2, 4-triazole MOFs appeared to be potential antibacterial catalysts in the antimicrobial field.

4.
Nanoscale ; 6(24): 14648-51, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25367698

ABSTRACT

This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.

5.
J Am Chem Soc ; 135(12): 4719-21, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23495826

ABSTRACT

We describe the use of benzyl alcohols in a solvothermal/alcoholysis reaction to form nanocrystalline sheets of anatase titania. By tuning the reaction conditions, we adjust the size of the nanosheets. The type and density of benzyl groups that decorate the basal plane of the titania sheets control the self-assembly into layered structures. These layered materials can be grown from solid substrates to create iridescent thin films that reflect specific wavelengths of visible light.


Subject(s)
Benzyl Alcohol/chemistry , Nanostructures/chemistry , Titanium/chemistry , Light , Nanostructures/ultrastructure , Nanotechnology , Surface Properties
6.
J Hazard Mater ; 171(1-3): 294-300, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19577837

ABSTRACT

Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r0.82. The highest degradation rate of methyl orange was 99% within 30 min obtained by using ATT-SnO(2)-TiO(2) with r=0.82. The repeated use of the composite photocatalyst was also confirmed.


Subject(s)
Azo Compounds/chemistry , Magnesium Compounds/chemistry , Nanocomposites/chemistry , Nanotechnology/methods , Photochemistry/methods , Silicon Compounds/chemistry , Tin Compounds/chemistry , Titanium/chemistry , Adsorption , Catalysis , Microscopy, Electron, Scanning , Nitrogen/chemistry , Phase Transition , Photochemical Processes , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...