Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Food Res Int ; 187: 114392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763654

ABSTRACT

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Subject(s)
Altitude , Camellia sinensis , Flavonoids , Plant Leaves , Tea , Plant Leaves/chemistry , Plant Leaves/metabolism , Flavonoids/analysis , Tea/chemistry , Camellia sinensis/chemistry , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Taste , Amino Acids/analysis , Amino Acids/metabolism , Food Handling/methods , Flavoring Agents/analysis , Alkaloids/analysis , Alkaloids/metabolism
2.
J Agric Food Chem ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607252

ABSTRACT

Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-ß-primeveroside and linalyl-ß-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-ß-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-ß-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-ß-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.

3.
J Xray Sci Technol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38669511

ABSTRACT

BACKGROUND: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.

4.
Food Chem ; 448: 139067, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547713

ABSTRACT

The Fujian and Yunnan provinces in China are the most representative origins of white tea. However, the key differences in the chemical constituents of the two white teas have rarely been revealed. In this study, a comprehensive comparison of the aroma profiles, chiral volatiles, and glycosidically bound volatiles (GBVs) in Fujian and Yunnan white teas was performed, and 174 volatiles and 28 enantiomers, including 22 volatiles and six GBVs, were identified. Linalool, linalyl-ß-primeveroside (LinPrim), and α-terpineol presented the opposite dominant configurations in Fujian and Yunnan white teas, and the chiral GBVs were firstly quantified with significant differences in the contents of R-LinPrim and ß-d-glucopyranosides of (2R, 5R)-linalool oxide A and (2R, 5S)-linalool oxide B. Moreover, discrimination functions for Fujian and Yunnan white teas were created using nine key variables with excellent reliability and efficiency. These results provide a new method for objectively distinguishing authentic white teas according to geographical origin.

5.
Food Res Int ; 175: 113713, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128982

ABSTRACT

Strip/needle green teas (SGT/NGT) processed using innovative technologies are in high demand; however, mechanisms behind their color and flavor have not been comprehensively studied. We aimed to reveal the dynamics of major pigmented components (carotenoids, lipids, flavonoids, and Maillard products) and their contributions to the flavor of green teas. The total content of flavonoids in SGT and NGT were 255 ± 4.51 and 201 ± 3.91 mg·g-1, respectively; these values are slightly lower than that in fresh leaves (FLs), resulting in a fresh and sweet aftertaste. In average, carotene content in SGT/NGT (24.8 µg·g-1) was higher than in FL (17.4 µg·g-1), whilst xanthophyll content (603 µg·g-1) decreased to one-half of that in FL (310 µg·g-1). Among the 218 primary metabolites, glutamine, glutamic acid, and arginine were found to accumulate and were dominate contributors for the umami and sweet taste. Notably, more than 96 volatiles were screened and revealed their correlations with carotenoids, lipids, and amino acids. Overall, the synergism between pigments and their non-enzymatic derivates' contribution to GT characterized flavor was illustrated.


Subject(s)
Camellia sinensis , Tea , Tea/chemistry , Camellia sinensis/chemistry , Flavonoids/analysis , Carotenoids , Lipids
7.
Food Res Int ; 169: 112891, 2023 07.
Article in English | MEDLINE | ID: mdl-37254338

ABSTRACT

Chiral volatiles play important roles in the formation of aroma quality of foods. To date, enantiomeric characteristics of chiral volatiles in Wuyi rock tea (WRT) and their aroma contributions are still unclear. In this study, an efficient enantioselective comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Es-GC × GC-TOFMS) approach to separate and precisely quantitate 24 pairs of chiral volatiles in WRTs was established, and the enantiomeric distribution and aroma contribution of chiral volatiles among WRTs from four representative cultivars were investigated. Enantiomeric ratio (ER) of R-α-ionone (80%) in Dahongpao (DHP), ER of S-α-terpineol (57%) in Jinfo (JF), ERs of R-γ-heptanolactone (69%), S-γ-nonanolactone (55%), (2R, 5S)-theaspirane B (91%), concentration of S-(E)-nerolidol (313.37 ng/mL) in Rougui (RG) and concentration of R-α-ionone (33.01 ng/mL) in Shuixian (SX) were unique from other types of WRTs, which were considered as the potential chemical markers to distinguish WRT cultivars. The OAV assessment determined 7 volatile enantiomers as the aroma-active compounds, especially R-α-ionone and R-δ-octanolactone in SX, as well as S-(E)-nerolidol and (1R, 2R)-methyl jasmonate in RG contribute much to aroma formation of the corresponding WRTs. The above results provide scientific references for discrimination of tea cultivars and directed improvement of the aroma quality of WRT.


Subject(s)
Tea , Volatile Organic Compounds , Tea/chemistry , Stereoisomerism , Volatile Organic Compounds/analysis
8.
Compr Rev Food Sci Food Saf ; 22(3): 1686-1721, 2023 05.
Article in English | MEDLINE | ID: mdl-36856036

ABSTRACT

The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.


Subject(s)
Camellia sinensis , Catechin , Humans , Tea/chemistry , Camellia sinensis/chemistry , Caffeine/analysis , Catechin/analysis , Catechin/chemistry , Antioxidants/chemistry
9.
Food Chem ; 414: 135739, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36827782

ABSTRACT

Liu-pao tea (LPT) has unique aroma characteristics, and is a special microbial fermented tea produced using dark raw tea (LPM) as its raw material. In this study, stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS) was applied to investigate the volatiles of 16 LPTs and 6 LPMs. Moreover, variations in volatile profiles between LPTs and LPMs were explored. Results showed that a total of 132 volatile compounds were identified from LPTs. The volatile fingerprint was constructed with a similarity ranged from 0.85 to 0.99. Furthermore, twenty-six aroma compounds were selected to depict the molecular aroma wheel of LPT. Multivariate statistical analysis revealed that the contents of 24 aroma compounds changed significantly (P < 0.05) when LPMs were processed into LPTs. These results reveal the volatile profiles of LPTs and aroma composition changes during microbial fermentation process, which might provide chemical basis of the aroma quality of LPT.


Subject(s)
Odorants , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Volatile Organic Compounds/analysis , Multivariate Analysis , Tea/chemistry
10.
Crit Rev Food Sci Nutr ; 63(20): 4757-4784, 2023.
Article in English | MEDLINE | ID: mdl-34898343

ABSTRACT

Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.


Subject(s)
Camellia sinensis , Tea , Humans , Tea/chemistry , Camellia sinensis/chemistry , Flavonoids/analysis
11.
Foods ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36553850

ABSTRACT

Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-ß-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.

12.
Curr Res Food Sci ; 5: 1098-1107, 2022.
Article in English | MEDLINE | ID: mdl-35856056

ABSTRACT

Pan-fried green tea (PGT) is an easily acceptable tea drink for general consumers. In this study, volatile profiles and characteristic aroma of 22 representative Chinese PGT samples were extracted using stir bar sorptive extraction (SBSE) and analysed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) analysis, and odour activity value (OAV) calculations. In total, 88 volatile compounds were identified. Alcohols (45%), esters (19%), and ketones (16%) were the dominant volatiles, and geraniol (484.8 µg/kg) was the most abundant volatile component in PGT, followed by trans-ß-ionone and linalool. In addition, the differences of aroma characteristics among PGT and other three types of green tea, namely baked green tea, steamed green tea, and sun-dried green tea, were also observed using partial least squares discriminant analysis (PLS-DA) and heatmap analysis, and it was found that ß-myrcene, methyl salicylate, (E)-nerolidol, geraniol, methyl jasmonate were generally present at higher content in PGT. This is the first comprehensive report describing the volatile profiles of Chinese PGT, and the findings from this study can advance our understanding of PGT aroma quality, and provide important theoretical basis for processing and quality control of green tea products.

13.
Food Chem ; 394: 133501, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35728471

ABSTRACT

In this study, we produced roasted, baked, steamed, and sun-dried green tea products using the same batch of fresh tea leaves (FTL) of Longjing 43 (Camellia sinensis var. sinensis), and explored processing effects on the metabolic profiles of four types of green teas (FGTs) using the widely targeted metabolomics. Results showed that 146 differential metabolites including flavonoids, amino acids, lipids, and phenolic acids were screened among 1034 non-volatiles. In addition, nineteen differential metabolites were screened among 79 volatiles. Most of non-volatiles and volatiles metabolites changed notably in different manufacturing processes, whereas there were no significant differences (p>0.05) in the levels of total catechins between FGTs and FTL. The transformation of metabolites was the dominant trend during green tea processing. The results contribute to a better understanding of how the manufacturing process influences green tea quality, and provide useful information for the enrichment of tea biochemistry theory.


Subject(s)
Camellia sinensis , Catechin , Camellia sinensis/chemistry , Catechin/analysis , Flavonoids/analysis , Metabolomics/methods , Plant Leaves/chemistry , Tea/chemistry
14.
Food Chem X ; 13: 100270, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35499018

ABSTRACT

Jianghua Kucha (JHKC) is a special tea germplasm with high bitterness growing in China; however, the chemical characteristics of JHKC are not completely understood. In this study, 61 differential metabolites were identified between 11 wild JHKC individuals and 3 control cultivars of Fudingdabai, Yunkang 10, and Zhuyeqi using comprehensive nontargeted and targeted metabolomics approach. The JHKC accessions mainly possessed significantly higher levels of purine alkaloids of theacrine (12.06 ± 5.23 mg/g) and 1,3,7-trimethyluric acid, non-epi-form flavanols (catechin, gallocatechin, catechin gallate, and gallocatechin gallate), and methylated flavanols of epigallocatechin-3-O-(3″-O-methyl)-gallate (4.79 ± 1.45 mg/g) and epicatechin-3-O-(3″-O-methyl)-gallate (1.02 ± 0.34 mg/g), as well as significantly lower levels of flavonol glycosides, which indicated that caffeine metabolism, flavonoid biosynthesis, and flavonol and flavone biosynthesis are mostly differential metabolic pathways. Our study demonstrated that JHKC germplasm is a promising resource for breeding novel tea cultivars with high contents of theacrine, non-epi-form flavanols, and methylated flavanols.

15.
Food Chem ; 388: 132969, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35447588

ABSTRACT

Suitable picking tenderness is an essential prerequisite for manufacturing tea. However, the influence of picking tenderness of fresh tea leaves on the aromatic components is still unclear. In this study, aromatic profiles and chiral odorants in fresh tea leaves and corresponding baked green teas with five levels of tenderness of two representative cultivars were analysed using stir bar sorptive extraction-gas chromatography-mass spectrometry. cis-Linalool oxide (furanoid) and methyl salicylate exhibited significantly increasing trends as samples of all series matured. The content of most chiral odorants was significantly high in the mature samples, and significant content variations of all enantiomers during baked green tea processing could be observed with different trends according to their precursors. In particular, the enantiomeric ratios of most chiral odorants were less influenced by the picking tenderness and processing, while drying (limonene), spreading and fixation (α-terpineol), and spreading (dihydroactinidiolide) influenced the chiral distribution of the aforementioned odorants.


Subject(s)
Odorants , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Stereoisomerism , Tea/chemistry , Volatile Organic Compounds/analysis
16.
Food Chem ; 375: 131877, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34953244

ABSTRACT

In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.


Subject(s)
Antioxidants , Tea , Animals , Antioxidants/analysis , China , Fermentation , Plant Extracts , Zebrafish
17.
Food Chem ; 365: 130615, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34329877

ABSTRACT

Chiral volatile compounds are known to be distributed in teas at various enantiomeric ratios. However, the performance of each enantiomer, including aroma characteristics, aroma intensities, and contribution to the overall flavor of tea, is still unclear. In this study, aroma characteristics and intensities of 38 volatile enantiomers in standards and baked green teas with chestnut-like aroma and clean aroma were evaluated by an efficient sequential headspace-stir bar sorptive extraction (seq-HS-SBSE) approach combined with the enantioselective gas chromatography-olfactometry/mass spectrometry (Es-GC-O/MS) technique. Moreover, aroma recombination results for the two types of baked green teas using 14 chiral odorants and four achiral odorants indicated that the combinations of the detected odorants mainly contributed to the "floral", "sweet", and "chestnut-like" aromas. R-Linalool simultaneously enhanced the "floral", "sweet", and "chestnut-like" aromas; R-limonene mainly contributed to the "sweet" and "clean" aromas; and S-α-terpineol promoted the "sweet" and "floral" aromas of baked green tea.


Subject(s)
Odorants , Volatile Organic Compounds , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olfactometry , Tea , Volatile Organic Compounds/analysis
18.
Sensors (Basel) ; 21(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300567

ABSTRACT

In an autonomous vehicle, the lane following algorithm is an important component, which is a basic function of autonomous driving. However, the existing lane following system has a few shortcomings: first, the control method it adopts requires an accurate system model, and different vehicles have different parameters, which needs a lot of parameter calibration work. The second is that it may fail on road sections where the lateral acceleration requirements of vehicles are large, such as large curves. Third, its decision-making system is defined based on rules, which has disadvantages: it is difficult to formulate; human subjective factors cannot guarantee objectivity; coverage is difficult to guarantee. In recent years, the deep deterministic policy gradient (DDPG) algorithm has been widely used in the field of autonomous driving due to its strong nonlinear fitting ability and generalization performance. However, the DDPG algorithm has overestimated state action values and large cumulative errors, low training efficiency and other issues. Therefore, this paper improves the DDPG algorithm based on the double critic networks and priority experience replay mechanism. Then this paper proposes a lane following method based on this algorithm. Experiment shows that the algorithm can achieve excellent following results under various road conditions.


Subject(s)
Accidents, Traffic , Automobile Driving , Algorithms , Calibration , Humans , Policy
19.
Food Chem ; 363: 130278, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34118756

ABSTRACT

Tea cultivars possessing purple shoots have attracted global interest. In order to gain a better understanding of the major chemical constituents responsible for the purple colouration, we applied widely targeted metabolomics to investigate the pigmented flavonoids of freeze-dried purple-coloured tea leaves (PTLs) in comparison with green-coloured tea leaves (GTLs). Thirty-three anthocyanins were identified, and delphinidin 3-O-galactoside and cyanidin 3-O-galactoside were found to be the most abundant in PTLs. A total of 226 metabolites including 193 flavonoids and 33 tannins were identified, and the methylated, acylated, and glycosylated flavonoids differed significantly between PTLs and GTLs. Moreover, significant differences (p < 0.01) in the average anthocyanin, flavonoid, chlorophyll and catechin contents were also observed. Four PTLs were found to contain high levels of (-)-epigallocatechin-3-(3″-O-methyl) gallate (>10 mg/g). These results suggest that structurally modified anthocyanins and major potential co-pigmented flavonoids are the chemicals primarily responsible for the purple colouration of the tea leaves.


Subject(s)
Anthocyanins , Flavonoids , Plant Extracts , Plant Leaves
20.
Hortic Res ; 8(1): 95, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33931596

ABSTRACT

In response to preharvest priming with exogenous methyl jasmonate (MeJA), tea plants adjust their physiological behavior at the molecular level. The whole-organism reconfiguration of aroma formation from the precursor to storage is poorly understood. In this study, we performed iTRAQ proteomic analysis and identified 337, 246, and 413 differentially expressed proteins in tea leaves primed with MeJA for 12 h, 24 h, and 48 h, respectively. Furthermore, a total of 266 nonvolatile and 100 volatile differential metabolites were identified by utilizing MS-based metabolomics. A novel approach that incorporated the integration of extended self-organizing map-based dimensionality was applied. The vivid time-scale changes tracing physiological responses in MeJA-primed tea leaves are marked in these maps. Jasmonates responded quickly to the activation of the jasmonic acid pathway in tea leaves, while hydroxyl and glycosyl jasmonates were biosynthesized simultaneously on a massive scale to compensate for the exhausted defense. The levels of α-linolenic acid, geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and phenylalanine, which are crucial aroma precursors, were found to be significantly changed in MeJA-primed tea leaves. Green leaf volatiles, volatile terpenoids, and volatile phenylpropanoids/benzenoids were spontaneously biosynthesized from responding precursors and subsequently converted to their corresponding glycosidic forms, which can be stably stored in tea leaves. This study elucidated the physiological response of tea leaves primed with exogenous methyl jasmonate and revealed the molecular basis of source and sink changes on tea aroma biosynthesis and catabolism in response to exogenous stimuli. The results significantly enhance our comprehensive understanding of tea plant responses to exogenous treatment and will lead to the development of promising biotechnologies to improve fresh tea leaf quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...