Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1231605, 2023.
Article in English | MEDLINE | ID: mdl-37681011

ABSTRACT

Introduction: Wilson's disease is an autosomal recessive disorder caused by ATP7B pathogenic mutations. The hallmark of this disorder mainly consists of liver involvement, neurologic dysfunction and psychiatric features. In addition, the kidneys can also be affected by excessive copper deposition. Methods: A total of 34 patients clinically diagnosed with WD were recruited. They underwent ATP7B gene sequencing and clinical data of symptoms, examination, and treatment were collected. Moreover, renal pathology information was also investigated. Results: We identified 25 potentially pathogenic ATP7B variants (16 missense, 5 frameshift, 3 splicing variants and 1 large deletion mutation) in these 34 WD patients, 5 of which were novel. In our cases, the most frequent variant was c.2333G>T (R778L, 39.06%, exon 8), followed by c.2621C>T (A874V, 10.94%, exon 11) and c.3316G>A (V1106I, 7.81%, exon 11). Furthermore, we described the thinning of the glomerular basement membrane as a rare pathologically damaging feature of Wilson's disease for the first time. Additionally, two patients who received liver transplant were observed with good prognosis in present study. Discussion: Our work expanded the spectrum of ATP7B variants and presented rare renal pathological feature in WD patients, which may facilitate the development of early diagnosis, counseling, treatment regimens of WD.

2.
Macromol Rapid Commun ; 44(14): e2300028, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37014235

ABSTRACT

Reversible deactivation radical polymerization (RDRP) is a facile and highly efficient technique for the synthesis of well-defined polymer with precise structure. dl-Methionine (Met) as a RDRP control agent is described and assessed for RDRP of styrene (St) and methyl methacrylate (MMA) with AIBN as radical initiator at 75 °C, which enables excellent control of this polymerization. The addition of dl-Methionine significantly decreased the dispersity (D) of the polymers for both monomers and first-order linear kinetic plots of polymethyl methacrylate (PMMA) are observed in DMSO. Considering the heat resistance of dl-Methionine, kinetic studies indicate that polymerization develops at a faster rate at higher reaction temperature (100 °C) with the same dl-Methionine content. Well-defined polymethyl methacrylate-block-polystyrene (PMMA-block-PSt) is successfully achieved by the chain extension reaction that demonstrates the high end fidelities of this polymerization approach. The system allows the use of dl-Methionine, a rich source and easily synthesized agent, to mediate RDRP strategy.


Subject(s)
Polymers , Polymethyl Methacrylate , Polymethyl Methacrylate/chemistry , Methylmethacrylate , Polymerization , Kinetics , Polymers/chemistry , Polystyrenes/chemistry , Methacrylates , Methionine , RNA-Dependent RNA Polymerase
3.
Sensors (Basel) ; 22(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746435

ABSTRACT

While Product-Service Systems (PSS) have a potential sustainability impact by increasing a product's life and reducing resource consumption, the lack of ownership might lead to less responsible user behavior. Smart PSS can overcome this obstacle and guarantee correct and safe PSS use. In this context, intelligent connected vehicles (ICVs) with PSS can effectively reduce traffic accidents and ensure the safety of vehicles and pedestrians by guaranteeing optimal and safe vehicle operation. A core subsystem to support that is the collision-warning system (CWS). Existing CWSs are, however, limited to in-car warning; users have less access to the warning information, so the result of CWS for collision avoidance is insufficient. Therefore, CWS needs to be extended to include more elements and stakeholders in the collision scenario. This paper aims to provide a novel understanding of extended CWS (ECWS), outline the conceptual framework of ECWS, and contribute a conceptual modeling approach of ECWS from the smart PSS perspective at the functional level. It defines an integrated solution of intelligent products and warning services. The function is modeled based on the Theory of Inventive Problem Solving (TRIZ). Functions of an ECWS from the perspective of smart PSS can be comprehensively expressed to form an overall solution of integrated intelligent products, electronic services, and stakeholders. Based on the case illustration, the proposed method can effectively help function modeling and development of the ECWS at a conceptual level. This can effectively avoid delays due to traffic accidents and ensure the safety of vehicles and pedestrians.


Subject(s)
Automobile Driving , Pedestrians , Accidents, Traffic/prevention & control , Humans
4.
Int J Biomed Imaging ; 2013: 563571, 2013.
Article in English | MEDLINE | ID: mdl-24454334

ABSTRACT

The effects of calibration phantoms on the correction results of the empirical artifacts correction method (ECCU) for the case of tube modulation were investigated. To improve the validity of the ECCU method, the effect of the geometry parameter of a typical single-material calibration phantom (water calibration phantom) on the ECCU algorithm was investigated. Dual-material calibration phantoms (such as water-bone calibration phantom), geometry arrangement, and the area-ratio of dual-material calibration phantoms were also studied. Preliminary results implied that, to assure the effectiveness of the ECCU algorithm, the polychromatic projections of calibration phantoms must cover the polychromatic projection data of the scanning object. However, the projection range of a water calibration phantom is limited by the scan field of view (SFOV), thus leading to methodological limitations. A dual-material phantom of a proper size and material can overcome the limitations of a single-material phantom and achieve good correction effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...