Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Lett ; 263: 14-24, 2023 11.
Article in English | MEDLINE | ID: mdl-37689315

ABSTRACT

OBJECTIVE: Efferocytosis dysfunction contributes to the progression and rupture of atherosclerotic plaques. Efferocytosis is crucially modulated by intracytoplasmic Ca2+, and mitochondrial calcium uniporter (MCU) complex proteins serve as key channels for regulating Ca2+ concentration. Therefore, it was speculated that MCU may affect the development of atherosclerosis (AS) by regulating efferocytosis. In the present study, we aimed to investigate whether MCU could affect foam cell formation by regulating efferocytosis. METHODS: We stimulated primary macrophages (Møs) using oxidized low-density lipoprotein (ox-LDL) to mimic the atherosclerotic microenvironment and treated them with Ru360, an MCU-specific inhibitor, and UNC1062, an inhibitor of efferocytosis. Additionally, we conducted double staining to determine the Mø efferocytosis rate. We measured the expression of MCU complexes and efferocytosis-associated proteins using western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, we separately detected the Ca2+ level in the cytoplasm and mitochondria (MT) using Fluo-4 AM and Rhod-2 methods. We separately determined the reactive oxygen species (ROS) level in cytoplasm and MT using dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probing method and Mito-SOXTM superoxide indicator staining. Additionally, we conducted the enzyme-linked immunosorbent assay (ELISA) to detect the production of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α). Oil Red O staining was performed to measure cytoplasmic lipid levels. RESULTS: Ru360 attenuated ox-LDL-induced efferocytosis dysfunction, and attenuated the upregulation of MCU and MCUR1 induced by ox-LDL, and meanwhile attenuated the downregulation of MCUb induced by ox-LDL. Ru360 attenuated the decrease of intracytoplasmic Ca2+ concentration induced by ox- LDL, Ru360 also attenuated the ROS production induced by ox- LDL, attenuated the release of IL-6, IL-18, IL-1ß, and TNF-α induced by ox- LDL, and attenuated the increase of intracytoplasmic lipid content induced by ox-LDL. UNC1062 attenuated the effects of Ru360 in reducing inflammatory cytokines and intracytoplasmic lipid content. CONCLUSIONS: In this study, we found that MCU inhibition modulated intracytoplasmic Ca2+ concentration, improved impaired Mø efferocytosis, and reduced ROS generation. Macrophage efferocytosis removed apoptotic cells and prevented the release of inflammatory factor and foam cell formation, and this can be a potential new therapeutic target for alleviating atherosclerosis.


Subject(s)
Atherosclerosis , Interleukin-18 , Animals , Mice , Reactive Oxygen Species/metabolism , Interleukin-18/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Disease Models, Animal , Macrophages/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Atherosclerosis/pathology
2.
Front Cardiovasc Med ; 8: 736215, 2021.
Article in English | MEDLINE | ID: mdl-34712709

ABSTRACT

Background: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a transmembrane glycoprotein that mediates uptake of oxidized low-density lipoprotein (ox-LDL) into cells. Previous studies had shown that LOX-1 deletion had a potential to inhibit cardiac fibrosis in mouse models of hypertension and myocardial infarction. Whether LOX-1 deletion also affects cardiac fibrosis associated with aging still remains unknown. The aim of this study was to investigate the effect of LOX-1 deletion on myocardial fibrosis in the aged mice. Methods: C57BL/6 mice and LOX-1 knockout (KO) mice with C57BL/6 background were studied to the age of 60 weeks. Both genotypes of aged mice were exposed to angiotensin II (Ang II) or saline for additional 4 weeks. The mice were then sacrificed, and myocardial fibrosis, reactive oxygen species (ROS) and expression of LOX-1, fibronectin, collagens, p22phox, and gp91phox were measured. Results: LOX-1 deletion markedly reduced Ang II-mediated rise of blood pressure in the aged mice (vs. saline-treated mice). LOX-1 deletion also limited fibrosis and decreased fibronectin and collagen-3 expression in the hearts of aged mice, but not the expression of collagen-1 and collagen-4. LOX-1 deletion also inhibited ROS production and p22phox expression. As the aged mice were exposed to Ang II for 4 weeks (resulting in hypertension), LOX-1 deletion more pronounced inhibiting myocardial fibrosis and ROS production, and decreasing expression of fibronectin, collagen-1, collagen-2, collagen-3, p22phox, and gp91phox. Conclusion: LOX-1 deletion limited fibrosis and ROS production in the hearts of aged mice. This effect was more pronounced in the aged mice with hypertension induced by Ang II infusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...