Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 144: 100-112, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802223

ABSTRACT

The abandoned smelters present a substantial pollution threat to the nearby soil and groundwater. In this study, 63 surface soil samples were collected from a zinc smelter to quantitatively describe the pollution characteristics, ecological risks, and source apportionment of heavy metal(loid)s (HMs). The results revealed that the average contents of Zn, Cd, Pb, As, and Hg were 0.4, 12.2, 3.3, 5.3, and 12.7 times higher than the risk screening values of the construction sites, respectively. Notably, the smelter was accumulated heavily with Cd and Hg, and the contribution of Cd (0.38) and Hg (0.53) to ecological risk was 91.58%. ZZ3 and ZZ7 were the most polluted workshops, accounting for 25.7% and 35.0% of the pollution load and ecological risk, respectively. The influence of soil parent materials on pollution was minor compared to various workshops within the smelter. Combined with PMF, APCS-MLR and GIS analysis, four sources of HMs were identified: P1(25.5%) and A3(18.4%) were atmospheric deposition from the electric defogging workshop and surface runoff from the smelter; P2(32.7%) and A2(20.9%) were surface runoff of As-Pb foul acid; P3(14.5%) and A4(49.8%) were atmospheric deposition from the leach slag drying workshop; P4(27.3%) and A1(10.8%) were the smelting process of zinc products. This paper described the distribution characteristics and specific sources of HMs in different process workshops, providing a new perspective for the precise remediation of the smelter by determining the priority control factors.


Subject(s)
Environmental Monitoring , Metallurgy , Metals, Heavy , Soil Pollutants , Zinc , Metals, Heavy/analysis , Zinc/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Geographic Information Systems , Models, Chemical
2.
Bull Environ Contam Toxicol ; 109(1): 51-60, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35353224

ABSTRACT

Bauxite residues are a mass of industrial wastes derived from aluminum metallurgy. This work provided a simple pyrolysis method to magnetize the bauxite residue to serve as a magnetic adsorbent towards heavy metals removal. The X-ray diffraction patterns and Mossbauer spectrum results confirmed the partial reduction of iron species with an obvious enhancement in magnetization. The magnetized bauxite residue exhibited excellent removal efficiencies for Cu2+, Cd2+ and Pb2+ with maximum adsorption capacities of 219.0 mg g-1, 275.4 mg g-1, and 100.4 mg g-1, which could be quickly separated through a magnet. The adsorption equilibrium data were fitted to the Langmuir isotherm model, while the adsorption kinetics followed a pseudo-first-order model. According to the characterization results, chemical precipitation and sorption was the major mechanism for the removal of Cu2+, Pb2+, and Cd2+. Thus, the magnetized bauxite residue exhibited promising applications for heavy metals removal in wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...