Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(46): e202312706, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37793987

ABSTRACT

Inspired by the metal-oxo cluster structural feature and charge separation behaviour of the oxygen evolving center (OEC) in photosystem II (PS-II) under photoirradiation, a new crystalline photochromic polyoxomolybdate, MV2 [ß-Mo8 O26 ] (1, MV=methyl viologen cation), is designed as a biomimetic oxygen evolution reaction (OER) catalyst in neutral electrolytes. After photoinduced electron transfer (PIET) with colour change from colourless to grey, it remains in an ultra-stable charge-separated state over a year under ambient conditions. The observed overpotential at 10 mA ⋅ cm-2 and Tafel slope decrease by 49 mV and 62.8 mV ⋅ dec-1 after coloration, respectively. The outstanding OER performance of the coloured state in neutral electrolytes even outperforms the commercial RuO2 benchmark. Experimental and theoretical studies show that oxygen holes within polyanions after irradiation serve as sites for enhancing direct O-O coupling, thus effectively promoting OER. This is the first successful application of electron-transfer photochromism to realize OER activity gain.

2.
Nat Rev Chem ; 7(2): 91-105, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37117911

ABSTRACT

Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.

3.
Front Chem ; 10: 895168, 2022.
Article in English | MEDLINE | ID: mdl-35572107

ABSTRACT

Developing facile methods for the synthesis of active and stable electrocatalysts is vitally important to realize overall water splitting. Here, we demonstrate a practical method to obtain FeNiOOH nanosheets on nickel foam (NF) as bifunctional electrocatalyst by growing a FeCo Prussian blue analog with further in situ oxidation under ambient conditions. The binder-free, self-standing FeNiOOH/NF electrode with hierarchical nanostructures requires low overpotentials of 260 mV and 240 mV at a current density of 50 mA cm-2 for oxygen evolution reaction and hydrogen evolution reaction, respectively, in 1.0 M KOH solution. Therefore, an alkaline water electrolyzer constructed by bifunctional FeNiOOH/NF electrode as both anode and cathode delivers 50 mA cm-2 under a cell voltage of 1.74 V with remarkable stability, which outperforms the IrO2-Pt/C-based electrolyzer. The excellent performance could be ascribed to the superior FeNiOOH intrinsic activity and the hierarchical structure. This work provides a cost-efficient surface engineering method to obtain binder-free, self-standing bifunctional electrocatalyst on commercial NF, which could be further extended to other energy and environment applications.

4.
Angew Chem Int Ed Engl ; 61(22): e202201590, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35289052

ABSTRACT

Achieving white-light emission, especially white circularly polarized luminescence (CPL) from a single-phase material is challenging. Herein, a pair of chiral CuI coordination polymers (1-M and 1-P) have been prepared by the asymmetrical assembly of achiral ligands and Cu2 I2 clusters. The compounds display dual emission bands and can be used as single-phase white-light phosphors, achieving a "warm"-white-light-emitting diode with an ultra-high color rendering index (CRI) of 93.4 and an appropriate correlated color temperature (CCT) of 3632 K. Meanwhile, corresponding CPL signals with maximum dissymmetry factor |glum |=8×10-3 have been observed. Hence, intrinsic white-light emission and CPL have been realized simultaneously in coordination polymers for the first time. This work gains insight into the nature of chiral assembly from achiral units and offers a prospect for the development of single-phase white-CPL materials.

5.
Chem Soc Rev ; 51(4): 1511-1528, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35137737

ABSTRACT

Advanced solar energy utilization technologies have been booming for carbon-neutral and renewable society development. Photovoltaic cells now hold the highest potential for widespread sustainable electricity production and photo(electro)catalytic cells could supply various chemicals. However, both of them require the connection of energy storage devices or matter to compensate for intermittent sunlight, suffering from complicated structures and external energy loss. Newly developed photoelectrochemical energy storage (PES) devices can effectively convert and store solar energy in one two-electrode battery, simplifying the configuration and decreasing the external energy loss. Based on PES materials, the PES devices could realize direct solar-to-electrochemical energy storage, which is fundamentally different from photo(electro)catalytic cells (solar-to-chemical energy conversion) and photovoltaic cells (solar-to-electricity energy conversion). This review summarizes a critically selected overview of advanced PES materials, the key to direct solar to electrochemical energy storage technology, with the focus on the research progress in PES processes and design principles. Based on the specific discussions of the performance metrics, the bottlenecks of PES devices, including low efficiency and deteriorative stability, are also discussed. Finally, several perspectives of potential strategies to overcome the bottlenecks and realize practical photoelectrochemical energy storage devices are presented.

6.
Adv Sci (Weinh) ; 9(7): e2104916, 2022 03.
Article in English | MEDLINE | ID: mdl-35018743

ABSTRACT

Acidified water electrolysis with fast kinetics is widely regarded as a promising option for producing H2 . The main challenge of this technique is the difficulty in realizing sustainable H2 production (SHP) because of the poor stability of most electrode catalysts, especially on the anode side, under strongly acidic and highly polarized electrochemical environments, which leads to surface corrosion and performance degradation. Research efforts focused on tuning the atomic/nano structures of catalysts have been made to address this stability issue, with only limited effectiveness because of inevitable catalyst degradation. A systems approach considering reaction types and system configurations/operations may provide innovative viewpoints and strategies for SHP, although these aspects have been overlooked thus far. This review provides an overview of acidified water electrolysis for systematic investigations of these aspects to achieve SHP. First, the fundamental principles of SHP are discussed. Then, recent advances on design of stable electrode materials are examined, and several new strategies for SHP are proposed, including fabrication of symmetrical heterogeneous electrolysis system and fluid homogeneous electrolysis system, as well as decoupling/hybrid-governed sustainability. Finally, remaining challenges and corresponding opportunities are outlined to stimulate endeavors toward the development of advanced acidified water electrolysis techniques for SHP.

7.
Nanoscale ; 13(37): 15755-15762, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34528043

ABSTRACT

Incorporation of ultrathin nanosheets with dopants/defects shows great potential to enable metal (oxy)-hydroxide electrocatalysts with enhanced oxygen evolution reaction (OER) performance via the regulation of atomic structure and bonding arrangements. However, it remains challenging in synthesis especially for such dual control and at large scale. In this study, we present a stepwise chemical oxidation route, involving phase transition and reconstruction processes, to access ultrathin CoOOH nanosheets with a thickness of ca. 4 nm and abundant oxygen vacancies. Other transition metals were also doped into CoOOH nanosheets through this strategy. Among them, the optimized FeCoOOH nanosheets demonstrated an efficient OER activity with overpotential as low as 252 mV (current density: 10 mA cm-2) and excellent stability. A high and stable solar-to-hydrogen efficiency of 10.5% was acquired when FeCoOOH nanosheets were used as the anode in a constructed water splitting device driven by solar energy. This study offers a noble and facile strategy for potentially scalable preparation of atom-modulated ultrathin metal (oxy)-hydroxide nanosheets, and also demonstrates the OER applications.

8.
Phys Chem Chem Phys ; 22(25): 14255-14260, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32555873

ABSTRACT

Water oxidation is a vital step in both natural and artificial photosynthetic processes. However, the effect of second coordination sphere for efficient oxygen evolution electrocatalysts has rarely been studied, becoming a bottleneck in many energy-related issues. In this article, the cobalt phosphonate (NH3C6H4NH3)Co2(hedpH)2·H2O (Co-PDA) displayed decent electrocatalytic water oxidation activity in 50 mM PBS solution (pH 7.0), comparable to the activity of state-of-the-art IrO2. Moreover, it exhibited a 160 mV lower onset potential and 6 times higher TOF than those of the counterpart, (NH4)2Co2(hedpH)2 (Co-NH4+), which existed with the same Co active center, while surrounded by different ligands. The related mechanistic studydemonstrates that the ligand in Co-PDA would benefit the proton-coupled electron transfer (PCET) processes and the formation of high valence state Co(iv).

9.
Chem Commun (Camb) ; 56(53): 7233-7236, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32495758

ABSTRACT

Three unprecedented multi-cluster copper(i) halides (MCCHs) have been assembled using conformationally flexible ligands. Further explorations demonstrate that the conformational compliance of the ligands may be the key to trap and stabilize the various copper(i)-halide clusters in one system, which opens a new way for the construction of multi-Cu(i)-cluster complexes. Moreover, the MCCHs show distinctive temperature-dependent photoluminescence.

10.
J Colloid Interface Sci ; 574: 33-42, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32298979

ABSTRACT

The development of lignin-based carbon electrodes for high-performance flexible, solid-state supercapacitors in next-generation soft and portable electronics, has received much attention. Herein, a self-doped multi-porous lignin-based biocarbon (SUMBC) has been prepared via a simple sulfonation assisted sacrificial template method for the effective formation of oxygenated C-S-C moieties in the carbon network. In this proposed method, the sulfonate moieties in lignin are responsible for the successful decoration of oxygen enriched C-S-C moieties as well as for creating the optimal multilevel porous architecture (ultra-micropores, micropores and mesopores) in the carbon matrix with a large surface area (3149 m2 g-1). Because the sulfonate functionalities yield more sulfur species and induce further defects into carbon framework, in the activation process, these sulfur functionalities produce additional narrow micropores. Benefiting from the above unique feature, the supercapacitor (SC) with the SUMBC electrode delivers excellent capacitive behavior in both acidic (2 M H2SO4) and alkaline (6 M KOH) liquid electrolytes. More prominently, the all-solid state, symmetric supercapacitors assembled by SUMBC show outstanding capacitance of ~140 F g-1 at 0.5 A g-1 in two different devices and reveals high energy density (~5.41 W h kg-1 at 0.5 k W kg-1 power density) and excellent stability. In addition, the solid-state supercapacitors manifest a remarkable flexibility at different bending angles. Hence, the present work provides a new strategy for the preparation of efficient biocarbons via a facile sulfonation assisted sacrificial template method; moreover, the high-performance all-solid supercapacitors based on sulfonated modified lignin has great potential in the field of portable and wearable energy storage devices.

11.
ChemSusChem ; 13(5): 876-881, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31944616

ABSTRACT

Semiconductors and metals can form an Ohmic contact with an electric field pointing to the metal, or a Schottky contact with an electric field pointing to the semiconductor. If these two types of heterojunctions are constructed on a single nanoparticle, the two electric fields may cause a synergistic effect and increase the separation rate of the photogenerated electrons and holes. Metal Ni and Ag nanoparticles were successively loaded on the graphitic carbon nitride (g-C3 N4 ) surface by precipitation and photoreduction in the hope of forming hybrid heterojunctions on single nanoparticles. TEM/high-resolution TEM images showed that Ag and Ni were loaded on different locations on C3 N4 , which indicated that during the photoreduction reaction Ag+ obtained electrons from C3 N4 in the reduction reaction, whereas oxidation reactions proceeded on Ni nanoparticles. Photocatalytic hydrogen production experiments showed that C3 N4 -based hybrid heterojunctions can greatly improve the photocatalytic activity of materials. The possible reason is that two heterojunctions could form a long-range electric field similar to the p-i-n structure in semiconductors. Most of the photogenerated carriers were generated and then separated in this electric field, thereby increasing the separation rate of electrons and holes. This further improved the photocatalytic activity of C3 N4 .

12.
Adv Mater ; 31(17): e1807807, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30803058

ABSTRACT

Metal-CO2 batteries represent a promising priority for sustainable energy and the environment. However, CO2 utilization in nonaqueous electrolytes mostly involves difficult CO2 electrochemistry, leading to poor selectivity and limited cycle performance. Herein, an aqueous rechargeable Zn-CO2 electrochemical cell that tunably produced CO fuel gas (90% Faradaic efficiency) during cell discharge (cathodic reaction: CO2 + 2e- + 2H+ → CO + H2 O) and O2 during cell charge at ≈2 V (cathodic reaction: H2 O → 1/2O2 + 2e- + 2H+ ), mimicking the separate steps of CO2 fixation and water oxidation during photosynthesis while exhibiting the advantages of high efficiency, tunable products, and operation independent of sunlight is proposed and realized. The cell achieves a remarkable energy efficiency of 68% with fuel generation, providing an alternative for the green, efficient, and safe utilization of CO2 by metal-CO2 batteries.


Subject(s)
Biomimetic Materials/chemistry , Carbon Dioxide/chemistry , Electric Power Supplies , Zinc/chemistry , Electrochemical Techniques/methods , Electrodes , Electrolytes/chemistry , Hydrogen/chemistry , Nanostructures/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photosynthesis , Renewable Energy , Surface Properties , Water/chemistry
13.
Angew Chem Int Ed Engl ; 57(52): 16996-17001, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30378220

ABSTRACT

As a promising technique for CO2 fixation/utilization and energy conversion/storage, the metal-CO2 battery has been studied to improve its interconversion between CO2 and carbonates/oxalates. Herein, we propose and realize a reversible aqueous Zn-CO2 battery based on the reversible conversion between CO2 and liquid HCOOH on a bifunctional Pd cathode. The 3D porous Pd interconnected nanosheet with enriched edge and pore structure, has a highly electrochemical active surface to facilitate simultaneous selective CO2 reduction and HCOOH oxidation at low overpotentials. The resulting battery has a 1 V charge voltage, a cycling durability over 100 cycles, and a high energy efficiency of 81.2 %. The battery mechanism is proposed as Zn+CO2 +2 H+ +2 OH- ↔ ZnO+HCOOH+H2 O, through which the reversible conversion between CO2 and liquid HCOOH was realized.

14.
Angew Chem Int Ed Engl ; 57(39): 12716-12720, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30094899

ABSTRACT

A covalent organic framework integrating naphthalenediimide and triphenylamine units (NT-COF) is presented. Two-dimensional porous nanosheets are packed with a high specific surface area of 1276 m2 g-1 . Photo/electrochemical measurements reveal the ultrahigh efficient intramolecular charge transfer from the TPA to the NDI and the highly reversible electrochemical reaction in NT-COF. There is a synergetic effect in NT-COF between the reversible electrochemical reaction and intramolecular charge transfer with enhanced solar energy efficiency and an accelerated electrochemical reaction. This synergetic mechanism provides the key basis for direct solar-to-electrochemical energy conversion/storage. With the NT-COF as the cathode materials, a solar Li-ion battery is realized with decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and extra 38.7 % battery efficiency.

15.
Dalton Trans ; 46(6): 1803-1810, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28102397

ABSTRACT

Progress in the development of efficient electrocatalysts for oxygen reduction reactions is imperative for various energy systems such as metal-air batteries and fuel cells. In this paper, an innovative porous two-dimensional (2D) poly-iron-phthalocyanine (PFe-Pc) based oxygen reduction electrocatalyst created with a simple solid-state chemical reaction without pyrolysis is reported. In this strategy, silicon dioxide nanoparticles play a pivotal role in preserving the Fe-N4 structure during the polymerization process and thereby assist in the development of a porous structure. The new polymerized phthalocyanine electrocatalyst with tuned porous structure, improved specific surface area and more exposed catalytic active sites via the 2D structure shows an excellent performance towards an oxygen reduction reaction in alkaline media. The onset potential (E = 1.033 V) and limiting current density (I = 5.58 mA cm-2) are much better than those obtained with the commercial 20% platinum/carbon electrocatalyst (1.046 V and 4.89 mA cm-2) and also show better stability and tolerance to methanol crossover. For practical applications, a zinc-air (Zn-air) battery and methanol fuel cell equipped with the PFe-Pc electrocatalyst as an air cathode reveal a high open circuit voltage and maximum power output (1.0 V and 23.6 mW cm-2 for a methanol fuel cell, and 1.6 V and 192 mW cm-2 for the liquid Zn-air battery). In addition, using the PFe-Pc electrocatalyst as an air cathode in a flexible cable-type Zn-air battery exhibits excellent performance with an open-circuit voltage of 1.409 V. This novel porous 2D PFe-Pc has been designed logically using a new, simple strategy with ultrahigh electrochemical performances in Zn-air batteries and methanol fuel cell applications.

16.
Biomicrofluidics ; 8(1): 014110, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24753730

ABSTRACT

Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single ß-galatosidase (ß-Gal) molecules and the fluorogenic substrate fluorescein di-ß-D-galactopyranoside were injected from two separated inlets to form uniform 20 µm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of ß-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the ß-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of ß-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...