Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 656: 155-167, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37989049

ABSTRACT

The electrocatalytic conversion of nitric oxide (NORR) to ammonia (NH3) represents a pivotal approach for sustainable energy transformation and efficient waste utilization. Designing highly effective catalysts to facilitate the conversion of NO into NH3 remains a formidable challenge. In this work, the density functional theory (DFT) is used to design NORR catalysts based on single and double transition metal (TM:Fe, Co, Ni and Cu) atoms supported by graphdiyne (TM@GDY). Among eight catalysts, the Cu2@GDY is selected as a the most stable NORR catalyst with high NH3 activity and selectivity. A pivotal discovery underscores that the NORR mechanism is thermodynamically constrained on single atom catalysts (SACs), while being governed by electrochemical processes on double atom catalysts (DACs), a distinction arising from the different d-band centers of these catalysts. Therefore, this work not only introduces an efficient NORR catalyst but also provides crucial insights into the fundamental parameters influencing NORR performance.

3.
Clin Immunol ; 241: 109073, 2022 08.
Article in English | MEDLINE | ID: mdl-35817291

ABSTRACT

Tumor immune microenvironment (TIME) is of critical importance for the development and therapeutic response of hepatocellular carcinoma (HCC). However, limited studies have investigated immune-related indicators for clinical supervision and decision. The current study aimed to develop an improved prognostic signature based on TIME. HCC patients from TCGA and ICGC database were classified into three subtypes (Immunity High, Immunity Medium and Immunity Low) according to ssGSEA scores of 29 immune gene sets. Differentially expressed immune-related genes (DE IRGs) between Immune High and Low groups were screened with an adjusted P < 0.05. Weighted gene co-expression network analysis (WGCNA) was used to establish gene co-expression modules of differentially expressed genes (DEGs) between tumor and normal tissues. 45 survival-related immune genes (SRIGs) were identified at points of intersection between hub genes and DE IRGs. By performing Cox regression and LASSO analysis, 3 of the 45 SRIGs were screened to establish a prognostic model. Patients with high risk scores exhibited worse survival outcome and poorer response to chemotherapy. Potential mechanisms of chemotherapy resistance also have been discussed. More significantly, high -risk patients showed increased immune cell infiltration and checkpoints, which suggested a benefit of immunotherapy. In addition, knockdown of IGF2BP3 was determined to significantly inhibit cell proliferation and migration in HCC. Our immune-related model may be an effective tool for precise diagnosis and treatment of HCC. It may help to select patients suitable for chemotherapy, and immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Tumor Microenvironment/genetics
4.
Tissue Cell ; 76: 101746, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35182986

ABSTRACT

Skin is a natural barrier of human body and a visual indicator of aging process. Exposure to ultraviolet (UV) radiation in the sunlight may injure the skin tissues and cause local damage. Besides, it is reported that repetitive or long-term exposure to UV radiation may reduce the collagen production, change the normal skin structure and cause premature skin aging. This is termed "photoaging". The classical symptoms of photoaging include increased roughness, wrinkle formation, mottled pigmentation or even precancerous changes. Mesenchymal stem cells (MSCs) are a kind of cells with the ability of self-renewal and multidirectional differentiation into many types of cells, like adipocytes, osteoblasts and chondrocytes. Researchers have explored diverse pharmacological actions of MSCs because of their migratory activity, paracrine actions and immunoregulation effects. In recent years, the huge potential of MSCs in preventing skin from photoaging has gained wide attention. MSCs exert their beneficial effects on skin photoaging via antioxidant effect, anti-apoptotic/anti-inflammatory effect, reduction of matrix metalloproteinases (MMPs) and activation of dermal fibroblasts proliferation. MSCs and MSC related products have demonstrated huge potential in the treatment of skin photoaging. This narrative review concisely sums up the recent research developments on the roles of MSCs in protection against photoaging and highlights the enormous potential of MSCs in skin photoaging treatment.


Subject(s)
Mesenchymal Stem Cells , Skin Aging , Fibroblasts , Humans , Skin , Ultraviolet Rays/adverse effects
5.
Front Microbiol ; 10: 444, 2019.
Article in English | MEDLINE | ID: mdl-30923517

ABSTRACT

Isovaleryl-CoA dehydrogenase (IVD), a member of the acyl-CoA dehydrogenase (ACAD) family, is a key enzyme catalyzing the conversion of isovaleryl-CoA to ß-methylcrotonyl-CoA in the third reaction of the leucine catabolism pathway and simultaneously transfers electrons to the electron-transferring flavoprotein (ETF) for ATP synthesis. We previously identified the ETF ortholog in rice blast fungus Magnaporthe oryzae (MoETF) and showed that MoETF was essential for fungal growth, conidiation and pathogenicity. To further investigate the biological function of electron-transferring proteins and clarify the role of leucine catabolism in growth and pathogenesis, we characterized MoIVD (M. oryzae isovaleryl-CoA dehydrogenase). MoIvd is highly conserved in fungi and its expression was highly induced by leucine. The Δmoivd mutants showed reduced growth, decreased conidiation and compromised pathogenicity, while the conidial germination and appressorial formation appeared normal. Consistent with a block in leucine degradation, the Δmoivd mutants accumulated isovaleric acid, grew more slowly, fully lacked pigmentation and completely failed to produce conidia on leucine-rich medium. These defects were largely rescued by raising the extracellular pH, suggesting that the accumulation of isovaleric acid contributes to the growth and conidiation defects. However, the reduced virulence of the mutants was probably due to their inability to overcome oxidative stress, since a large amount of ROS (reactive oxygen species) accumulated in infected host cell. In addition, MoIvd is localized to mitochondria and interacted with its electron receptor MoEtfb, the ß subunit of MoEtf. Taken together, our results suggest that MoIVD functions in leucine catabolism and is required for the vegetative growth, conidiation and full virulence of M. oryzae, providing the first evidence for IVD-mediated leucine catabolism in the development and pathogenesis of plant fungal pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...