Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794053

ABSTRACT

Dissolved gases in the aquatic environment are critical to understanding the population of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane separation technology have made great strides in dissolved gas detection. However, the prolonged water-gas separation time of permeable membranes remains a key obstacle to the efficiency of dissolved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced the analysis efficiency of dissolved gases without water-gas separation or sample preparation. The feasibility of this sensor for direct measurement of dissolved gases was verified by taking the detection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit (MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ applications requiring fast and highly sensitive dissolved gas sensing.

2.
Opt Express ; 31(22): 36293-36303, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017784

ABSTRACT

We have theoretically investigated the size-dependent optoelectronic properties of InGaP/AlGaInP-based red micro-LEDs through an electro-optical-thermal coupling model. The model considers thermal effects due to current crowding near the electrodes, non-thermal efficiency droop due to electron leakage, and etch defects on the LED sidewall. Sidewall defects reduce the carrier concentration at the light-emitting surface's edge and exacerbate the current crowding effect. In addition, p-side electron leakage at high current densities is the leading cause of the efficiency droop of AlGaInP LEDs. In contrast, the effect of temperature on the overall efficiency degradation of LEDs is even more significant.

3.
Nanoscale Adv ; 5(10): 2743-2747, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37205280

ABSTRACT

This paper presents an easy and intact process based on microfluidics static droplet array (SDA) technology to fabricate quantum dot (QD) arrays for full-color micro-LED displays. A minimal sub-pixel size of 20 µm was achieved, and the fluorescence-converted red and green arrays provide good light uniformity of 98.58% and 98.72%, respectively.

4.
Sensors (Basel) ; 23(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36991980

ABSTRACT

The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36' E, 44°44' N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from solar scattering spectra by multi-axis differential optical absorption spectroscopy (MAX-DOAS). We analyzed the temporal variations of NO2 and HCHO as well as the sensitivity of ozone (O3) production to the concentration ratio of HCHO to NO2. The largest NO2 volume mixing ratios (VMRs) occur in the near-surface layer for each month, with high values concentrated in the morning and evening. HCHO has an elevated layer around the altitude of 1.4 km consistently. The means ± standard deviations of vertical column densities (VCDs) and near-surface VMRs were 4.69 ± 3.72 ×1015 molecule·cm-2 and 1.22 ± 1.09 ppb for NO2, and they were 1.19 ± 8.35 × 1016 molecule·cm-2 and 2.41 ± 3.26 ppb for HCHO. The VCDs and near-surface VMRs for NO2 were high in the cold months and low in the warm months, while HCHO presented the opposite. The larger near-surface NO2 VMRs appeared in the condition associated with lower temperature and higher humidity, but this relationship was not found between HCHO and temperature. We also found the O3 production at the Longfengshan station was mainly in the NOx-limited regime. This is the first study presenting the vertical distributions of NO2 and HCHO in the regional background atmosphere of northeastern China, which are significant to enhancing the understanding of background atmospheric chemistry and regional ozone pollution processes.

5.
Nanoscale ; 14(16): 5994-5998, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35389395

ABSTRACT

PQDs are promising color converters for micro-LED applications. Here we report the micropore filling fabrication of high resolution patterned PQDs with a pixel size of 2 µm using a template with SU8 micropores.

6.
Micromachines (Basel) ; 13(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35334741

ABSTRACT

In this article, red and green perovskite quantum dots are incorporated into the pixels of a flexible color-conversion layer assembly using microfluidics. The flexible color-conversion layer is then integrated with a blue micro-LED to realize a full-color display with a pixel pitch of 200 µm. Perovskite quantum dots feature a high quantum yield, a tunable wavelength, and high stability. The flexible color-conversion layer using perovskite quantum dots shows good luminous and display performance under different bending conditions; is easy to manufacture, economical, and applicable; and has important potential applications in the development of flexible micro-displays.

7.
Opt Express ; 29(13): 20217-20228, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266115

ABSTRACT

In this article, 2000 PPI red silicon-based AlGaInP micro-LED arrays were fabricated and investigated. The AlGaInP epilayer was transferred onto the silicon substrate via the In-Ag bonding technique and an epilayer lift-off process. The silicon substrate with a high thermal conductivity could provide satisfactory heat dissipation, leading to micro-LED arrays that had a stable emission spectrum with increasing current density from 20 to 420 A/cm2 along with a red-shift of the peak position from 624.69 to 627.12 nm (Δλ = 2.43 nm). Additionally, increasing the injection current density had little effect on the CIE (x, y) of the micro-LED arrays. Further, the I-V characteristics and light output power of micro-LED arrays with different pixel sizes demonstrated that the AlGaInP red micro-LED array on a silicon substrate had excellent electrical stability and optical output.

8.
Opt Express ; 29(3): 4405-4421, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33771019

ABSTRACT

This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.

9.
Opt Express ; 28(5): 6320-6335, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225883

ABSTRACT

A novel tempo-spatially mixed modulation imaging Fourier transform spectrometer based on a stepped micro-mirror has the advantages of high throughput, compactness, and stability. In this paper, we present a method of image- and spectrum-processing and performance evaluation, which is utilized to obtain a high-quality reconstructed image without stitching gaps and a reconstructed spectrum with significantly reduced noise and side-lobe oscillation. A theoretical model of instrument line shape and signal-to-noise ratio is established to verify the effectiveness of non-uniformity sampling correction and spectral resolution enhancement. Meanwhile, the performance of the instrument was evaluated combined with experimental results.

10.
Appl Opt ; 58(31): 8383-8389, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31873318

ABSTRACT

This paper reports on the design and fabrication of a ${48} \times {48}$48×48 full-color pixelated addressable light-emitting diode on silicon (LEDoS) micro display. The metallization pattern was designed and fabricated on a silicon substrate, while red, green, and blue monochromatic micro LEDs were integrated on the silicon substrate using transfer printing. The red, green, and blue micro LEDs are flip-chip structures in which red micro LEDs were fabricated using substrate transfer, mesa etching, metal deposition, and chip dicing. The integration process does not require wire bonding, which reduces the full-color pixel size and increases the integration speed. The LEDoS micro display can be addressed individually for each LED pixel and display representative patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...