Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723807

ABSTRACT

Selenium-rich tea polysaccharides (Se-TPS) were extracted via high hydrostatic pressure technology with a pressure of 400 MPa (200-500 MPa) for 10 min (3-20 min) at a material-to-solvent ratio of 1:40 (1:20-1:50). Subsequently, Se-TPS1-4 were isolated and purified, with Se-TPS3-4 as the main components. A spectral analysis proved that Se, which has antioxidant activity, existed. An in vitro study found that among Se-TPS, Se-TPS3-4 attenuated the release of ß-hexosaminidase, histamine, and interleukin (IL)-4. Furthermore, in vivo experiments revealed that treatment with Se-TPS downregulated IL-4 levels and upregulated TGF-ß and interferon-γ levels to improve imbalanced Th1/Th2 immunity in tropomyosin-sensitized mice. Moreover, Se-TPS promoted Lactobacillus and norank_f_Muribaculaceaek growth and upregulated metabolites such as genipin and coniferyl alcohol. Overall, these results showed the strong anti-allergy potential of Se-TPS by regulating mast cell-mediated allergic inflammatory responses and microbiota regulation, highlighting the potential of Se-TPS as a novel therapeutic agent to regulate allergy-associated metabolic disorders.


Subject(s)
Gastrointestinal Microbiome , Hydrostatic Pressure , Polysaccharides , Tea , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Tea/chemistry , Mast Cells/metabolism , Mast Cells/drug effects , Mast Cells/immunology , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/isolation & purification , beta-N-Acetylhexosaminidases/metabolism , Cytokines/metabolism , Male , Tropomyosin/metabolism , Tropomyosin/immunology
2.
Foods ; 12(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36765970

ABSTRACT

This study aimed to assess the feasibility of high hydrostatic pressure (HHP) treatment to obtain high quality juice, and prepared functional apple juice using fermentation technology. The physicochemical properties of HHP (10 min) pasteurized and pasteurized (85 °C, 15 min) apple juices were compared during fermentation. Moreover, the survival of Lactobacillus plantarum after fermentation under simulated gastrointestinal conditions was evaluated. Results showed that HHP-treated apple juice had better properties than that of pasteurized in terms of color difference, total phenol content, and antioxidant activity. After fermentation, about 2.00 log CFU/mL increase in viability of cells was observed and there was around 0.8 reduction in pH value, and the antioxidant capacities were also significantly improved. Additionally, the content of caffeic acid, ferulic acid, and chlorogenic acid significantly increased after 24 h of fermentation. The survival of Lactobacillus plantarum in simulated gastric fluid reached 97.37% after fermentation. Overall, HHP treatment is expected to be a substitute technology to pasteurization in order to obtain higher quality fermented fruit juice. This study could also be helpful for exploitation of fermented juice.

SELECTION OF CITATIONS
SEARCH DETAIL
...